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PREFACE

In a considerable number of our colleges and universities the

work of the first semester in mathematics is devoted to Algebra

and Trigonometry. Usually Algebra is taken up first and then

Trigonometry, or else the two subjects are studied on alternate

days. Neither plan is quite satisfactory. It has therefore seemed

to the writer that a single book, treating both subjects in a corre-

lated manner, might be of service both to student and teacher.

In the present text the principal departures from the subject

matter usually treated will be found in chapters 13 and 14. The
chief aim has been to follow a mode and sequence of presentation

which shall introduce the student who needs to apply his knowl-

edge of mathematics in his other work as directly as possible to

those facts and concepts which are most useful to him.

For this reason much stress is laid on graphic methods in the

chapters on linear and quadratic equations, and this is followed

up later as opportunity arises. It is thought that the extra time

so used will be more than made up when the student begins his

study of Analytical Geometry, because he will have become grad-

ually familiar with the fundamental idea of this subject and need

not readjust himself after an abrupt transition to a strange and

mysterious realm.

For a similar reason the basic 'idea of the DilTerential Calculus

is presented in a study of the derivative, and application is made
to some of the simple standard functions. Maclaurin's formula is

also obtained, and used to derive several standard expansions,

among them the binomial theorem for any exponent.

A considerable emphasis has been placed on numerical compu-

tation, that the student may have some training in ready calcula-

tions. This can be largely supplemented by requiring students

to work out mentally in class many of the numerical exercises.

It has been thought advisable to include some matter which

may be omitted if only one semester is to be given to this course.

Just what is to be omitted must of course be left to the judgment

of the instructor.

W. C. B.
Lincoln, March, 1910.
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ADVANCED
ALGEBRA AND TEIGONOMETRY

CHAPTER I

The Operations of Algebra

1. Letters as Symbols of Quantity. — In algebra, the letters of

the alphabet are used to designate quantity or magnitude. Thus

we speak of a line whose length is I feet, of a weight of w pounds,

or of a velocity of v feet per second. Here the letter used, I, w, v,

is suggested by the quantity considered, length, weight, velocity.

When a number of different lines are considered, say n lines, their

several lengths may be indicated by h, h, h, • . - , In, or by l^^\

l^-\ l'^^\ ' • ' , l'^^^- Three or four different lengths may be indi-

cated by accents (called " primes "), as V, I", V", ....
Fixed or known quantities are usually designated by the first

letters of the alphabet, as by a, 6, c, . . . ; unknown quantities

which are to be determined from given data are represented by

the last letters of the alphabet, as hy x, y, z, . . . . \i x denote

a quantity of a certain kind, other quantities of the same kind

are indicated by Xy, X2, X3, . . . (read, "x sub-one, x sub-two,

X sub-three, etc."), or by x^^\ x''-\ x^^\ . . . (read "x super-

script one, X superscript two, x superscript three, etc."), or by

x', x'\ x'" , . . . (read " x prime, x second, x third, etc.").

2. Signs of Relation. — These are

=
, read " equals," " is equal to," etc.;

5^, read " is not equal to ";

<f-read
'
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Signs of Aggregation.— When several quantities are to be

treated as a single one, they are enclosed by parentheses ( ),

brackets [ ], or braces
\ j, or a line is drawn over them, called a

vinculum, .

Signs of Quality. — These are

+ ,
positive; — , negative;

|
|, absolute value.

The first two simply indicate opposite qualities; thus, if -{-v, or

simply V, denote a velocity in one direction, then —v denotes an

equal velocity in the opposite direction; if -\-t denote a tempera-

ture above zero, —t denotes an equal temperature below zero.

The third symbol is used to indicate that we are dealing simply

with the numerical (absolute) magnitude of a quantity, without

regard to its sign.

3. The Four Fundamental Operations.— These are, addition,

subtraction, multiplication and division, indicated by the symbols

+> ~> X, -r-, respectively. It will suffice to recall the rules or

laws in accordance with which these operations are to be performed.

They are here given in the form of equations, and the student is

asked to state each in words.

Laws of Addition.

1. If a = 6 and c = d, then a + c = h -\- d.

2. If a = 6 and c 7^ d, then a + c 7^ b -\- d.

3. a -\- b = b -{- a. (Commutative law.)

4. (a -\- b) + c = a -{- (b -^ c). (Associative law.)

Laws of Subtraction.— (Subtraction defined by (a— 6)4-6= a.)

1.
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Laws of Division. — (Division defined bj' (a -^ 6) X 6 = a.)

1. U a = b and c = d, then a -^ c = b -^ d, provided c, d j^ 0.

2. {a ^ b) X c = {aX c) ^ b, provided b 9^ 0.

3. a X {b ^ c) = (a X b) -^ c, provided c 7^ 0.

4. (a ^ 6) -f- c = (a H- 0) -^ 6, provided 6, c 7^ 0.

5. a -^ (6 -^ c) = (a -^ 6) X c, provided b, c 9^ 0.

Some Working Rules. — Tiie sign before a parenthesis may be

changed if the sign of each of the terms enclosed is changed also.

When several quantities are to be subtracted, change their signs

and add them.

Division may be expressed as a multiplication of dividend by

reciprocal of divisor.

The sign of a product will be + or — , according as there are

an even or an odd number of negative factors.

4. Rational Numbers. — All positive integers can be formed by

adding +1 to itself a sufficient number of times. Through the

operation of subtraction, negative integers are introduced. By
performing the operations of addition, subtraction and multipli-

cation on the system of positive and negative integers, no new

numbers are formed. Division, however, does introduce a new

class of numbers, namely fractions, positive or negative, formed

of the quotient of two integers.

All numbers, positive or negative, which are formed of the

quotient of two integers, are called rational numbers. They can be

obtained from + 1 by means of the four fundamental operations.

Rational Expressions. — Let there be given certain quantities,

a, b, . . . X, y, . . . . Any expression which can be built up

from these quantities by means of the four fundamental operations

is called a rational expression (or function) in terms of the quan-

tities involved.

5. Zero.— Zero is defined as that number ichich may be added

to any quantity without changing the value of the quantity. As an

equation, the definition is

a + = a.

Since (a - 0) + = a,

it also follows that

a — = a.
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6. The operation of division by zero is excluded, because, what-

ever be the number a, there is no number which represents a -r- 0.

The reason for this we proceed to consider. In the first place,

must be less in absolute value than any assignable number,

however small. For if this were not the case, we would have

a + 5^ a. Now consider the quotient r , and suppose a to be

fixed, and 6 to be taken smaller and smaller. As b tends toward

zero, the quotient r increases without limit and becomes larger

a
than any assignable number. But as b approaches zero, t takes

the form - and at the same time increases without limit so that

no value can be assigned to this form.

Example. Let z = 1.

Then x = a?

(1 + X) (1 - X).and
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When V is very small (relative to the constant c), p will be very-

large, and as v becomes still smaller, p must increase. We can

choose V so small that p will exceed any assignable quantity, or p

becomes oo when v = 0. This is often indicated by lim i> = «
r=

(read " the limit of p is infinity, when v approaches zero ")•

We are thus led to write the equation,

— = QC, when « 9^ 0.

This is not a proper equation, but simply an abbreviation for the

statement, " A fraction whose numerator is not zero, and whose

denominator approaches zero, becomes larger than any assignable

quantity."

Since a quantity which increases without limit can be made as

large as we please after being increased or diminished, multiplied

or divided by any number," we have

oo-|-a=co, CO— a=co; ooXa=oo, co-^a = oo.

' 8. Powers.— For brevity we put a X a = a~, a X a X a = a^,

and a X aX a ... to n factors = a"". The quantity a" is

called the nth power of a. The number n is called the exponent

and a the base of the quantity a".

9. Some Important Relations. — The following equations and

statements should be verified carefully and committed to memory:

1. (a +6)2= a2 + 2a6 + 62.

2. (a - 6)2= a? -2 ah + 62.

3. a-- 62 = (a + 6) (a - 6).

4. a3+ 6-^ = (a + 6) {a^ - ah + 62).

5. a3-63 = (a - 6) (a2 + a6 + 62).

6. (a + 6 + c)2 = a2 + ^2 _^ c2 + 2 {ah -^ ac + he).

7. The square of any polynomial equals the sum of the squares

of the separate terms plus twice the product of each term by each

following term.

8. a" — 6" is divisible by (a + 6) and (a — 6) when n is even.

9. a"— 6" is divisible by (a — 6), not by (a + 6), when n is odd.

10. a" + 6" is divisible by (a + 6), not by (a — 6), when n is

odd.

11. a'' + 6" is not divisible by (a + 6) or (a — 6), when n is

even.
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10. Exercises.— Simplify, by removal of parentheses and col-

lection of like terms:

1. ila-h) + a-ia).
2. il a% - I ab^) + (I a% + | ab^).

3. (0.8 a2 - 3.47 ab - 17.25 ac) - (f a^ - 0.47 ab - 12t ac).

4. (I x2 + 3ax - I a2) -(2a? -ax- la^).

5. Mx+ {[482/ - (6z +Sy- 7x) +4z]- [48y-8x+2z - (4x + y)]}.

6. 6a - {4a -[86 -2a + 6] + (36 -4a)}.

Perform the operations indicated in the following exercises and simplify the

results when possible:

7. -I
a^c (I

62 - 4 c^ + I a(P - 3).

8. 3 xy"^ (x^ -3a?y + 3 xy^ - 2).

9. 0.6 ac^d'^ (2 arb - 3cd^ + hac^ - 5).

10. 3i a26c (6 a^ - 4 62 + 2 a63 - 3 c2).

11. (x^ -2x + l){x^ -Sx+2).
12. (3 a^b - 2 a%~ + 06^) ( 2 a^ - a6 - 5 62).

13. {x^ -lxY + ^ xy^ - y^) {x^ -2xif + y%
14. (a + bf + (a - bf.

15. {\a-^lf-{ha-l)\
16. (x2 + 1 - 2/2 + 22/) (^2 + 1 + 2/2 - 22/).

17. [ar + (a + 6) a; + a6] [x- - (a + 6) .r + a6].

18. [{x + o)2 - a.r] [{x - af + ax].

19. a (a + 1) (a + 2) - (a - 1) (a - 2) (a - 3)

20. [x{y-\)-y{x- 1)] [(x + yf - (x - yf].

21. 31-^ ?/i^np5 _=. _ io| mhip^.

22. a26c7 ^ A a462c8.

23. ifxV-^ -fia;V-
24. 3 a2 (6 + x)3 ^ 6 a^ (6 + x)^.

25. 1.75 x^ (a;2 - 1)" 4- 25 x^ (1 - a;2)2.

26. (8 a^6 - 24 0*6^ + 16 a768) -- - 8 a%.

27. (8 xhj - ^ xy' - i 2/' + 2 2/') - - t :^y^^

28. x^ {or + 62) - 2 x* (a? + b^f ^ x^ (a2 + 62).

29. (6 ah - 17 a2x2 + 14 ax^ - 3 x^) - (2 a - 3 x).

30. (4 2/" -18 2/^ + 22 2/2 -7 2/ + 5) -^ {2y-5).
31. [2 x» +'7 xhj - 9 2/- (x + 2/)] ^ (2 X - 3 2/).

32. (-Jd^ + id*-nrf''+^) -(-f^+2d).
33. (r\ a'-ia'b + U ci%~ + i 06^) ^ (| a + -J 6).

34. (-/j m^ + 2^ to2^ _ 2 5 ^^2 ^ 1^4 „3) ^ (1 ,„ _ 7
,j)

35. (x'^ - §3 X* + U x^ - I x2 - \V X + t) H- (x2 - i X + 5).

36. (2«3 -.i6a + 6) ^ (a + 3).

37. (4 x" - x22/2 + 6 X2/^ - 9 2/") ^ (2 .r - X2/ + 3 2/2).

38. (x" + 4 x22/2 - 32 y') ^ (x - 2 2/).

39. («^ - 5 «'''6'- - 5 0=6^ + 6->) -r {a~ - 3 a6 + 62).

40. (x='-8 2/^) -~{x-2y).
41. (A^'-O//) -^(i.r+3 2/).
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42. (27 a^b^ + 64 xV) ^ (3 ab + ixy).

43. (a^b^ + c») H- (aV _ abc +^).
44. (m=^ -32y^) ^ (ii-2v).

^

45. (a - 6 + c - d)-. \ v>

46. (x - i ?/ - 2 it + 'f')-.

11. Factoring. — To factor an expression is to find two or more

quantities wliose product equals the given expression. When
two or more expressions contain the same factor, it is called their

common factor.

We shall illustrate the methods commonly used in factoring

given expressions by means of some typical examples.

(a) Expressions, each of ivhose terms contains a common factor.

Example. I xhfz' + \ ^'iz - A xVz' = i x^-z (h xz^ + J - } x^)-

(6) Expressions whose terms can be grouped, so that each group

contains the same factor.

Example, x' - 7 x^y + Uxif -Sy^ = (x^ -Sy^) - (7 x-y - 14 xif)

= {x-2ij){jr + 2xy + 4i-) -7xy{x-2y)
=.(x-2 2/)(x2-oxy/ + 4 2/2)

= {x-2y){x-y){x-4y).

(c) Trinomials of the form ax^ -{-bac -^ c.

Let h,khe a pair of factors whose product is a, and m, n a,

pair whose product is c. Arrange these four factors as in the

adjacent schemes ^X^^ ^X^ and form the cross-products as indi-

cated. The sum of the cross-products must equal h. If this

is true in the first scheme, the factors are {hx -\- n) {kx -\- m)

;

in the second, the factors are (Jix + m) {kx + n).

Example. 12 x' — 7 x — 10.

Here h, k may be one of the pcairs of numbers 1, 12, or 2, 6, or 3, 4, both num-
bers to be taken with the same sign. The numbers m, n may be —1, 10, or

+ 1, -10, or -2, 5, or +2, -5. By trial we find that h, k must be 3, 4,

and ni, n must be 2, —5. The factors are therefore (3 x + 2) (4 x — 5).

To find the factors of 12 x^— 7 xij — 10 y-, we would proceed

as above and obtain {3 x -\- 2 y) {4 x — 5 ij).

(d) Expressions ivhich can he written as the differetice of the

squares of two quantities.

The factors are the sum and the difference of the two quantities

respectively.

Example. a* + a%- -\-b^ = a^ + 2 <rb" + /'' - (^'b"

= («- + V'f - {abf

= (a^ +ab + b-) (a^ - ab + b"^).
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(e) Expressions of the form P^ -\- 2 PQ -\- Q- , where P and Q
are monomials or polynomials.

The expression is then the product of two factors each equal to

(P + Q), and is therefore (P + Q)-.

Exam-pie. x~ + y- - 2xy - 4:ax -\- 4: ay +4: or

= (x -y)- -4a(x - y) +4a2
= (x-2/-2a)2.

(/) Factor Theorem. — If a polynomial in x reduces to zero

when X is replaced by h, the polynomial contains the factor

(x - h).

Proof: Let the polynomial be

P = aox"" + aix''-'^ + aox""-- + • • • + an-iX + an.

Putting h for x, we have by hypothesis

ao/i''+ ai/i"-^ + a2/i"-2 + • • • + On-ih -\- a n= 0.

Therefore by subtraction,

P = ao(x-- h-)+ adx^-' - h-^)+ aoix-^ - h-^)+ • • •

-{-an-\{x - h).

But each term of the right member of the last equation contains

the factor x - h. (See 8 and 9 of 9.) Hence P is divisible by

(X - h).

Example. Factor x'' + 3 x^ - 4 x - 12.

If this is the product of three factors (x - h) {x - k) {x - I), then evi-

dently hkl = 12. Hence we substitute in the given polynomial the factors

of 12, and find that it vanishes when x = 2, x = - 2, and x = - 3. Hence

the factors are (x - 2) (x + 2) (x + 3).

12. Exercises. — Factor

1.
' ^L -^-. 11. :,^ _ X - 110.

2« 8«' 4a^
j2. 7 + 10x + 3.c2.

2. x2-2ax + o2-T/2.
j3^ x'-lOa^x + Oa^

4. 15x2 -7x- 2.
^^ xV-3x?/z-10A

5. 6x'' + lQxy-7y\
^g. 2 + 7x-15x2.

6. x2-2x-24. ^^ x3-G4x-x2 + 64.

7. 8x''-27xz;
18. oS + 1.

8. 27x*+Sxy^. ^q ^6 _ j
' 13/ + 36.

20: (a+bf + l.
9. X

10. 4 a" - 5 a2 + 1
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21. (x^ + v") - (X + yf.

22. «» + b'' - c* - d^ + 2 a'^lf- - 2 c^^.

23. d'c- + acd + afec + bd.

24. 1 - aV _ 62^2 ^ 2 afexy.

25. xV - x^y^ - x^if + xy*.

26. a8-82a'* + 81.

27. xV-17x2y-110.
28. (a2+3)2-36a2.
29. x'''+9x2 + 16x +
30. 4x' -Sx''' -X- + ^

13. Highest Common Factor. — The highest common factor

(H. C. F.) of two or more polynomials is the polynomial of highest

degree that will divide them all without a remainder.

When each of the given polynomials can be factored by inspec-

tion, the H.C.F. is easily determined from their common factors.

Example. The H. C. F. of 32 (x - l)2(x + l)3(x2 + 1) and 24 (x - 1)3

(X + I)2(x2 + 1)2 is 8 (X - 1)2(X + l)2(x2 + 1).

When the given polynomials cannot be readily factored, we use

a method like that of arithmetic.

Let the given polynomials be Pi and Po and let Q be the quo-

tient and R the remainder when Pi is divided by P^. Then

Pi = PiQ + R.

Hence any factor common to Pi and P2 is also a factor of R.

Hence it is a common factor of P2 and R. Divide P2 by R,

obtaining

P2 = RQi + Rx.

Hence a common factor of P2 and R is also a factor of Pi. Divid-

ing R by Pi, we obtain

R = R\Q2 + P2,

and the common factor must be present in P2, and so on.

Ride. — If at any step there is no remainder, the last divisor

is the required H. C. F.

14. Least Common Multiple. — The least common multiple

(L. C. M .) of two or more polynomials is the polynomial of lowest

degree that is exactly divisible by each of them.

When the given polynomials can be easily factored by inspec-

tion, form the product of all the types of factors present in any
of them, taking each factor the greatest number of times that it

occurs in any of the given expressions; this product is their L. C. M.
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When the given polynomials cannot readily be factored, their

L.C.M. is obtained by use of the following theorem:

The product of the H. C. F. and L. C. M. of two polynomials

equals the product of the polynomials.

Proof: Let F be the H. C. F., and M the L. C. M. of the two

polynomials Pi and P2. Also let

^ = Qi and ^ = Q2;

then Pi = FQi and Po = FQ2.

Hence P1P2 = FX PQ1Q2.

Since F contains all factors common to Pi and P2, Qi and Q2

have no common factor, and the product FQ1Q2 contains all the

factors of the types present in both Pi and P2.

.-. M = FQ1Q2 = ^^; or, MF = P.P..

Rule. — To find the L. C. M. of two polynomials, divide their

product by their H. C. F.

To find the L. C. M. of more thai> two polynomials, find the

L. C. M. of two of them, then the L. C. M. of this and a third one

of the polynomials, and so on.

15. Exercises.— Find the H. C. F. of

1. 6 (x + If and 9 (x^ - 1).

2. a" - 6" and a'' - 6".

3. 12 (x2 + 2/2)2 and 8 (.r" - 1/).

4. u^ — v^ and vr — v".

5. {c?x — ax"f and ax {a? — x^f.

6. 27 (a" - h^) and 18 (a + hf.

7. (24 a^ _i- 36 ab - 48 ac) and (30 a? + 45 a% - 60 a\).

8. 125 x^ - 1 and 35 x^ - 7 a: + 5 ax - tt.

9. 4x2- 12x1/ +9?/2 and 4x2 -9?/2.

10. x2 + 2x - 120 and x2 - 2x - 80.

11. 12x2 -17ax + 6a2 and 9x2 + 6ax -8a2.

12. x3 + 4 x2 - 5 X and x3 - 6 X + 5.

13. x^ + 3 x2 + 7 X + 21 and 2 x" + 19 .r + 35.

14. 0^ + 703+702 - 15o and n^ -2a^ - 13a + 110.

15. 20x'' + x2 - 1 and 75 x" + 15 x^ - 3 x - 3.

16. x" - ox' - a2x2 - o^x - 2 o" and 3 x^ - 7 ax- + 3 a'x - 7 a^ .

17. x^ - y\ x^ + ?/, and x^ + y^.

18. x2 - 2 a2 - ax, x2 - 6 a2 + ax, and x2 - 8 a2 + 2 ax.

19. o^ + 02^2 + b\ a* + ob^, and a% + ?>^.

20. 3x3 - 7x2^/ + 5x1/2 - y3^ ^2y _|_ 3x2,2 _ 3x3 - yS^ and 3x3 + 5 x22/ +
X2/2 - 2/3.
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FindthcL.C. M. of:

21. S a-.r-y^ and 12 ahx'y-.

22. 4ax^y', Gn^xy^, and ISa^x-y.

23. a^ - b^ and (a - b)~.

24. cv^bx — abhj and abx + Iry.

25. .r- - 3 X - 4 and x' - x - 12.

26. x2 - 1 and x2 + 4x+3.
27. 6x2 + 5 X - 6 and 6 x^ - 13 x + 6.

28. 12x2 + 5x - 3 and 6x=' + x^ - x.

29. 12 x2 - 17 ax + 6 a^ and 9 x^ + 6 ax - 8 a^.

30. a3-9a2+23a-15 and a2_8a + 7.

31. ??i^ + 2 m^n — y^m^ — 2 n^ and ?«^ — 2 ??r-/t — ?/;/r + 2 n'.

32. x^ — ir, (x — ?/)2, and x -\-y.

33. x^ + 3 X + 2, x^ + 4 X + 3, and x" + 5 x + 6.

34. X" + 5x + 10, x^ - 19x - 30, and x^ - 15 x - 50.

35. x^ + 2 X - 3, x^ + 3 x2 - X - 3, and x^ + 4 x- + x - 6.

36. 6x- - 13x + 6, 6x2 + 5.^ _ 6, and 9x2-4.
37. x2 - 1, x2 + 1, and .t3 + 1.

38. x2 + 1, x"" - 1, and x" - 1.

39. a^ - 6^ a9 - b^, and a^ - b^.

40. x2 - i/2, x^ + y\ x3 - y^, and x^ + 7/.

16. Fractions. — An algebraic fraction is the indicated quotient

of two algebraic expressions. It is written in the form y,, N

being called the numerator and D the denominator.

When A'' and D have a common factor F, so that we may put

A^ = NiF and D = D^F,

then the fraction may be simplified as follows: ^

N ^NiF ^N,
D DxF Di'

When all factors common to A^ and D have been removed in

this way, the fraction is said to be reduced to its lowest terms.

When the common factors of N and D are not obvious on

inspection, find the H.C.F . oi N and D, and remove it as above.

17. Sign of a Fraction.— By the rules for division we have,

N ^_ ^^ ^_ Ji ^ ZL^
D~ D -D-d'

Hence the rules: Changing the sign of either numerator or denomi-

nator changes the sign of the fraction.

Changing the signs of both numerator and denominator does not

affect the sign of the fraction.
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The sign of a fraction may be changed either by changing the

sign standing before the fraction, or by changing the sign of the

numerator or of the denominator.

18. An integral expression is one whose literal parts are free

from fractions.

A mixed expression is one formed from the sum of an integral

part and one or more fractions.

A complex fraction is one whose numerator, or denominator,

or both are fractions or mixed expressions.

Every mixed expression and every complex fraction can he re-

duced to a simple fraction {or to an integral expression).

For, two or more simple fractions can be reduced to a common

denominator and then combined into a single fraction by writing

the sum of the numerators over the common denominator. For

this purpose the simplest common denominator is the L. C. M. of

the separate denominators. This is called the least common de-

nominator of the fractions considered. In this manner we reduce

D[^D,^ ^"^ D

A mixed expression is reduced by the formula

N PD + N
^'^ D~ D

Finally, a complex fraction is reduced by first reducing its

numerator and denominator separately to simple fractions. The

reduction is then completed by the formula,

N
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__x ^ _ X ^ _ xy ^ xy

1 _ 5 ?/^_^ y - X X - y

y y

Reducing to the common denominator x — y, we liave

^^ +_^ +^^ = Ill^^Jl£^±f2/ = (provided X ^ 2/).
y -x ' x -y x -y x-y
o , x2 , x2 , x2
2. X3 ; = X3

1 - X4 ,1 - X4 X (1 - X4)

X X

a:2 , x2
, ,

1 x4 +

1

X3 r = X3 +
X — X (1 + X2) — X3 X X

19. Exercises.— Reduce to simple fractions or to integral

expressions:

• W^±f_«^^\(a2_:,2) n.
x^+y_2^ 3x2+3y2

^

^- U - ^ « + -^i

^^-
x2 - 2/2

• x + y

2
"'~^% "'~^'. 1„ 45 (x - 2/) . 27(x-y)2.
a3 + 63 2 a6 12. -^

a4_-64 x2J^xy_+y_2

x3 - 7/3
^ a2 + 62 •

13.

^- (M)(^^)-
/x5 _ 7/\ /x _ 2/\

xi2 + yi2
_ x4 + 2/4

14.

16.

xi2 - 2/12 x^ — 2/8

32(3+2/)
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22. "
I

^
I

^^'
' U +V U — V U' +v^

- 1 2 (x - 2) ,
x-3

23.

24.

a;2-5x+6 x2 - 4x + 3 ' a;2 - 3x +2
7+3x2 5-2x2 3 -2x+x2
4-x2 4+4x+x2 4-4x+x2'
l-2x 2x-3 ,

1

3 (x2 - X + 1) 2 (x2 + 1) ' 6 (x + 1)

6c ac a6 a/ \ a + b + cj

27. /^! + «^-?-« + l

28.
\a X 6 ?// Va S ^ 2//

29 (l- ^^"1 /7x 49x2 343x3 \

29-
1,^ ir^j ini/ + 121 2/2

+ 1331W

(ah 3bc\ /5ac 7abW3b _ ah
\

V3c2 5a2J \762 902^ Uo2 3c2^

M x3j/2 _ 3x2j/3 2xy4 _ ?/\ /2x2y _ 3xy2 _ 3y3\
^

i 5a3 2a26 +3a62 h^)\Za-i 5 ah 2h'^l'



CHAPTER II

Involution. Evolution. Theory of Exponents. Surds

AND ImAGINARIES

20. Involution is the operation of raising a quantity to an

indicated power.

The symbol a^ represents a X a X a ... to n factors (8),

n being a positive integer. Hence, if m be a second positive

integer, we have by cancellation,

(1) — = a"-'" when n > m;

(2) — = ^— when n <m.
a'" a'"-"

Negative Exponent.— We now defijie the symbol a-" to be

a^ a X a. X a ... to n factors

Then —^ = a-^'"-") = a"-"».

We may now write,

(3) ^ = a"-'",
a"*

whether n is greater or less than m. Hence by the introduction

of the negative exponent, the two equations (1), (2), may be written

as a single equation, (3).

We now easily verify the following rules for operating with

integral exponents, positive or negative.

IV. (a"')"=a""\

V. (ab)"= a"b'\

17

I.
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21. Exercises.

1. State the above rules in words.

2. Verify the above rules by means of the definitions for a" and a "".

3. Show that rule II contains rule IIL

4. Show that rule V contains rule VL
Perform the operations indicated in the following exercises, and express

the results in forms free from fractions:

6. (^5)'. 8. [(ax)3m + 4.]5^-6n.

ax^

(a263)3" Xd^x^J ' \ 6c4
)'

Zero E:q)onent.— If in rule III we put n = m, we get

But a"-^ a'^= 1. Therefore we define the symbol a^ by the

equation a^ = 1. Then III is true fpr all integral values of n

and m, equal or unequal. Hence we add to the above rules:

VII. ao = 1. 1

22. The nth root of a quantity a (symbol ^/a or a") is a quan-

tity whose nth power is equal to a.

Evolution is the operation of finding the indicated root of a

quantity.

By definition, we have

y/aX\/aX^a ... to n factors = (7a)'*= a,

111 / l\n

or a" X a" X a" ... to n factors = \ a"/ = a.

The last equation will be covered by rule IV (20) if we extend

that rule to the case where m is the reciprocal of a positive inte-

ger. We now extend rules I-VI and asswme* that m and n may
be not only positive or negative integers or zero, but also the

reciprocals of positive or negative integers.

If we let n = - and m = - , r and s being integers, we have



23, 24 ] INVOLUTION.



20 INVOLUTION. EVOLUTION [25

time the smaller of the two rational numbers, we obtain a series

or sequence of rational numbers which increase and approach

V2; by noting each time the larger of the two numbers, we obtain

a second sequence of rational numbers which decrease and also

approach V2.

If on the other hand we consider the sequence of numbers

13 133
133J5

' lO' lOO' lOOO'

4
these evidently approach the value ^ ' which is a rational number.

The idea here indicated is used to define irrational numbers.

Without going further into the subject here, we shall say that an

irrational number is one which can he represented to any degree of

approximation, hut not exactly as the quotient of two integers.

Such numbers may be produced in performing the operation of

evolution on rational numbers.

Real Numbers. — The rational numbers, including all integers

and quotients of integers, and the irrational numbers together

constitute the class of real numbers.

Irrational Expressions.— We now extend the idea of irration-

ality to algebraic quantities in general by the following definition:

An algebraic expression is said to he irrational when its parts

are affected by other than the four fundamental operations.

Hence any expression involving indicated roots is irrational. As

examples, we have

^ /l -}.. 2
VI + X-; (x-- xy) -' + (xy -if); y j-

1 +2a + a-

The last expression may be simplified. Thus,

\/
l+2a+a2 Vl + 2a4-a2 1 + a

Vl-a Vl

A surd expression is one involving an indicated root which can-

not be exactly found.

A surd number is an indicated root of a number which cannot

be exactly found.

25. Irrational Exponents. — What meaning shall we attach to

the expression 2"^-? Let ai, ao, as, ... be a series of rational
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The rules for operating with complex numbers, aside from II

above, are considered in chapter 17.

Principal Root. — There are in general n distinct quantities, the

nth power of each of which equals a given number a (see 259).

That is, a given number has in general n distinct nth roots.

Thus,

the square of + 2 or — 2 is 4;

the cube of - 2, (1+ i VS), or (1 - iVs) is - 8;

the fourth power of -\- 2, — 2, -\- 2 i or — 2 i is 16.

The principal root of a number is its real positive root when

one exists; if not, its real negative root; when all roots are imagi-

nary, any one of them may be chosen as the principal root.

1

In this text the symbol for a root, y/a or a'*, will mean the

principal root only.

Thus: V4 = 2, not ± 2; if we wish to indicate both square roots,

we always write ± Va.

27. Reduction of Surds. — The expression 'l/a is usually called

a radical, V being the radical sign, n the index of the radical and

a the radicand. When the radicand is not a perfect nth power,

the expression is a surd.

A surd is said to be in its simplest form when all factors of the

radicand which are perfect powers of the same index as that of

the radical have been taken out from the radical sign. Thus:

s/^

Sa*b^ 2ab ,,-^

27? =3^ -J^bK

Two surds are similar when they can be expressed with the

same index and radicand. Otherwise they are dissimilar.

A quadratic surd is one whose index is 2.

28. The sum, difference, product and quotient of two dissimilar

quadratic surds are always surds.

Proof: Let the surds be Va and Vb. Since they are dissimilar,

neither ah nor a -j- 6 can be a perfect square. Hence the product

or quotient of the two surds is a surd.

Further, let c be a rational number, and assume that

Va ± Vb = c.
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33. Exercises.

Write the following with positive exponents and in simplest form

:

3a0 6-2c-4
1.

4.
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Perform the following multiplications uiul divisions

:

47. (3+2V2) (3-2 V-^)-

48. (5+2V3)(3-5V3).
49. (2V6-3V5)(V;5 + 2Vli).

50. (V7- V3HV2 + Vo)-

51. (V9 - 2 V4) (4 -^ 72).

62. (Va+6+ V« ) (V"+ 6 - V'O
53. Vm + V" ^'" - V"-

54. va^^xy/;:^;.

65. Va\/a2 x V^/rT.

56. N/.r V-^ X V'j^^^.

57. -TxV X V-c^-

_- */a62 «/r.r5

59. V2.S -^ V7. •

60. Vis ^ V^.

61. V;52 - V2.

62. </ri{\ -- ^7.

63. V243 -^ 73.

64. \/l2 ^ VO-

65. V54 ^ ^30.

66. v^ -=- -y^-

67. Vrt^ ^ '\/2~a3.

68. \/«^P -^ -V"^^-

69. \/27-i29 -V- V<i2^

70. -{/Sxh/i ^ 2 x2//3.

Express with fractional exponents instead of radicals:

71.



103. (m-^ + m-^y.

104. ia~^x-^ -ax^y.

105. {a'^+a^-J)\

26 EXERCISES [33

Perform the following operations and simplify results:

93. Va <Jca X '^{/a^ X ^/a2 </a7.

94. {x-^+x-iy~^+y~')ix~^ -x-^2/-= +2/-^.

95. (2o-*-3a-^ + a-* -2) (a-* -2a-^ +3).

96. Write out the result of replacing a~^ by 6 in exercise 95.

97. (a^ - 2 a^ + 3 a^J \2 a^ - a^ + 2).

98. {yn - ayn +3 hyn - c) \yn + byn - cyV.

99. (2a-i6-' -3a-h-"-y.

100. (a- ^+6-^)1

101. (xi-y^y.

102. (l-'-n-^y.

106. (2a^ -36'^-4c^)^

107. (a* -2 6* +3 c^ -iSy.

108. (.r* ?/' - 2 x' y^ + 3 x^ 2/
- 2 a;^ 2/^)

^

109. Write out the result of replacing x^ by u and y* by f in exercise 108,

110. (x-l) ^ {</x - l).

111. (x + 1) -(V^ + l).
^

112. (Vx - V^) - (V5 - -Ty)-

113. (a« -6^) ^ (a"-6'''').

114. (.r= - xy^ + x^y - y^) ^(\/~x - \/ij).

115. (a^ - a^ - 4 a^ + 6 n - 2 Va) ^ (a^ - 4 V^ + 2).

116. (a^ - &4 - c* + 2 \/6c) (a^ + 6' - c*').

Express the following in the form a\/— 1.

117. V^^; V-25; V-81-

118. V^^'; V^^2; V-a;2n.

119. V^^81. 121. 7^^'256.

120. V^^- 122. '<J-a20,

123. V^^25 - V^^49 + V- 121.

124. V- a" + V- a2 - V- 4 a*.

125. V- (wi +n)2 + V-('« -^)^ - V'
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Multiply and reduce to the form a + b yf— 1 : (i= y/— l).

126. (a+6 V^^)(a-bV^)- 129. {s/S + i y/r2) {y/2 + i yj3 )

.

130. (- 1 +;: V3)^
127. (3+5i)(4-

128. ix + 2i)iy -



CHAPTER III

Logarithms. Binomial Theorem for Positive Integral

Exponents /

34. Logarithm.— The simple laws of operation for exponents

have given rise to a method of calculation involving the use of a

function called the logarithm. We shall first illustrate this method.

Suppose that we know the powers of 10 which are required to

produce a set of numbers, as in the adjacent table, where the

exponents are given to the nearest figure in table.

the third decimal. The exponent of 10 in each 5.00 = lO^-^s^

equation is called the common logarithm (or 5.50 = lO'^-^**^

the logarithm to the base 10) of the number on 6.00 = 10°-^'^

the left. Thus, the logarithm of 5.00 is 0.699, 6-50 = lOO-^is

, . ,• 7 nn — 100-845
of 5.50 IS 0.740, and so on. As equations, ^'^^

"
\qo.s75

we write ^^^ ^ i^omz
logio 5.00 = 0.699, 8 50 = iQO-^^a

logio 5.50 = 0.740, 9.00 = W-^^^^

9.50 = l00-9"8

10.00 - lO^ooo

35. By aid of such a table products of numbers (within certain

limits) can be obtained by adding the logarithms of the factors;

also, division is reduced to subtraction of logarithms.

Example 1. Find the value of 6.5 X 8.5 X 9.5.

We have 6.5 X 8.5 X 9.5 = IQO-sisx 100-929 x 100-978

= 100.813+0.929+0.078

= 102.720 = 102 X 100-720.

Now 0.720 lies almost exactly midway between 0.699 and 0.740; hence the

number corresponding to 100-720 ^ill be midway between 5.00 and 5.50 and is

equal to 5.25. (This involves the assumption tliat a logarithm changes pro-

portionately to the change in the number, an assumption which is not exactly,

but very nearly, true except for numbers near zero, provided the changes in

the numbers are small.)

Therefore,
6.5 X 8.5 X 9.5 = 102 X 100-720 = lOO X 5.25 = 525.

The exact value is 524.875.

28

and so on.
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Definition. Interpolation is the process of calculating numbers
intermediate to tliose given in a table.

Example 2. -
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We shall now consider the general theory of the method illus-

trated above.

37. Logarithm of a Number. — Let a be a certain fixed number,

n any other number, and let x be the exponent of a required to

produce n. Then x is the logarithm of n to the base a.

As equations,

if a^ = n, then a? = loga n.

We give below some very simple tables of logarithms.

Number.
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Let X be the logarithm of m, y that of n, the base being a.

Then
I logo m = X, {a'^= m,

I loga n =y,

Hence

mn = a^ + ^ and —
11

or, log„ mn = x -{- y = log„ tn + log„ n,

and loga— ^ X — y = log„ w» — log„ n.
n

We have therefore the rules:

I. The logarithm of a product equals the sum of the logarithms of

the factors.

II. The logarithm of a fraction equals the logarithm of the numer-

ator minus the logarithm of the denominator.

Also, if as before,

loga fn = X, so that m = a^,

then, if p and q be any real numbers,
X

mP = a^' and •\/m = a^.

Hence, log„ m^' = px = p log„ tn,

X 1
and loga Mm = "^= ^ log„ rn.

We have therefore two additional rules:

III. The logarithm of any power of a number equals the ex-

ponent of the power times the logarithm of the number.

IV. The logarithm of any root of a number equals the logarithm of

the number divided by the index of the root.

(Rule III contains rule IV, since the power in question may be

fractional.)

40. The following facts regarding logarithms should also be

carefully noted.

(a) In any system the logarithm of the base is 1.

For d^ = a. :. loga a = 1.

(6) In any system the logarithm of 1 is 0.

For ao = 1. .-. loga 1 = 0.
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(c) In any system whose base is greater than unity, the log-

arithm of is — CO.

For if d^ = m and a > 1, then if a; is a large negative number,

m will be small. As x increases indefinitely, always being nega-

tive, m approaches zero. That is,

a-°==Oifa>l; /, log == - oo.

(d) A negative number has no (real) logarithm, the base being

positive.

(e) As a number varies from to -|-oo, its logarithm varies

from —CO to +«3, the base being greater than 1.

Wlien the number is greater than 1, its logarithm is positive.

When the number is less than 1, its logarithm is negative.

41. Exercises. (See Appendix for tables and explanation of

their use.)

1. Discuss (c) of (40) when the base is less than unity.

2. Discuss (e) of (40) when the base is less than unity.

In the following exercises, the base is understood to be 10, and four-place

logarithms are to be used.

3. Find log 831, log 8.31, log .831, and log .0831.

4. Find log 78.03, log .073, log .00284.

5. Find the approximate value of 564.1 X .0065.

6. Calculate \/ 154.2 and (7.541)3.

7. Calculate 518 ^ 313 and 25.03 ^ 2.14.

8. Calculate .001022 -;- .0000513 X 1.415.

9. Calculate 17 V29 and 41 VO.512.

10. Calculate 7o^* X <JQA7'^.

,, „
, , , (.00165)3 (.07(>4)2

11. Calculate -^3^35^^,

12. Calculate ^214 - V2li.

Write as a



42,43] BINOMIAL THEOREM 33

The Binomial Theorem for Positive Integral Exponents

42. This theorem is used to express (a + 6)" in expanded form.

We shall here obtain the formula assuming n to be a positive

integer; the proof for other values of n will be found in (221).

By actual multiplication we have

(a + 6)2 = a2 -H 2 ah -\- b^,

(a -I-
&)3 = ^3

_f_ 3 ^2^ _^ 3 (iJ^2 ^ ^3^

(a + 6)4 = a4 + 4 a% + 6 a262 + 4 ab'' + 6^.

Here we observe the following laws: *

I. The number of terms is 1 greater than the exponent of the

binomial.

II. The exponent of a in the first term equals that of the bino-

mial and decreases by unity in each succeeding term. The ex-

ponent 0/ 6 is 1 in the second term and increases by unity in each

succeeding term.

III. The coefficient of the first term is 1, and of the second

term the exponent of the binomial. If the coefficient of any

term be multiplied by the exponent of a in that term, and the

result be divided by the exponent of b plus 1, we obtain the

coefficient of the next following term.

43. Now let

(1) (a+6)" = a«+cia'^-i6+C2a"-262+ • • • +c,„_ ia"-^'"-i)6'"-i

+c,„a''-'"6'"+c,„+ia"-('» + i)6™ + i+ • • • .

We have here assumed laws I and II and have written the ex-

ponents accordingly. Assuming also law III, we shall have

._,, n — 1 w — (w — 1) n — m
(2) ci = n; C2 =^2" ci ; c,„ = Cm- 1 ; c,„+ 1 = ^—t^c,^.

We can now show that the same laws are true for the expan-

sion of (a + bY'^^.

Multiplying (1) by (a -|- b) and collecting like terms we have

(3) (a+6)" + i=a" + i + (l+ci)a(" + i)-i6+(ci+C2)a(" + i>-262H

+ (c,„_i+c,„)a" + i-"'6'"+ (c,„+c,„ + i)a(" +
i)-("* + i)6'« + i+---

The number of terms will be n + 2, since the exponent of a starts

with n + 1 and decreases to 0. Hence law I is still true. Also

law II is evidently true.
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According to the third law, we should have

(l+ci)=n + l; ci+C2- ^''"^2^~ -^

(l+ci); • . .

{Cm + Cm+i) =
^i-l-l

^^^- 1 + ^"'^^

These equations all become identities on substituting from (2).

Therefore all three laws are true for the expansion of (a + 6)"+^

provided that they are true for the expansion of (a + 6)". But they

are true for (a + 6)^, hence for (a + b)-^, hence for (a + b)^, and so

on, for any positive integral exponent.

This method of proof is called proof by induction.

Writing out the values of several coefficients we have,

n (n - 1) n (n - 1) (w - 2)
ci=n; C2=

^ ^ 2 '
^^
=

TTTs '
* *

*

_ n (n - 1) (n - 2) . . . (n - ?n + 1)
^'"~

1 . 2 . 3 . . . . w

where c^ is the coefficient of the (m + l)th term.

In place of 1 • 2 • 3 • . . . w we use the symbol [w or m! (in

either case, read "factorial m"). Then equation (1) becomes

,
,

7i(n-l)(n-2) . • • (u-m+ 1) ,._„,,„,,

I'm

When o = 1 and & = a; we have,

\2 [3

44. The expansion of (a + b)" may be reduced to that of

(1 + x)" thus:

(a + br = a"(l + ^y = fl4l + 'i^ + • • •]•

In place of Cm to denote the coefficient of the (m + l)th term

of the expansion of (a + 6) , the symbols nCm or {^J are often

used. These are called the binomial coefficients.
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Table of Binomial Coefficients

w =
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Calculate:

26. the 6th term of (3 + 2 x^)^.

27. the 5th term of {'\/2~c + V37z)io.

28. the Sth term of (2 6^ - i V^)^-

29. the 12th term of (3 i/ + J y^Y^.

30. the 10th term of (Vl~^3 _ Vl^)™.

16. Approximate Computation by Use of the Binomial Theorem.

— When re is a small fraction, the terms of the formula

rapidly decrease. In amj numerical problem in which only approxi-

mate results are required, retain only enough terms of the expansion

to obtain the desired degree of accuracy.

It will often be found sufficient to use the simple formula,

(1 + a^)" = 1 + nx, approximately.

Example 1. Calculate (0.997)4 to three decimals.

(0.997)4 = (1 - .003)4 = 1 - 4 X .003 = 0.988.

Exercise. Show that the terms neglected will not affect the third decimal

place.

Example 2. Calculate (2.05)3 to three decimals.

(2.05)3 = 23 (1 + .025)3 = 8 (1 + 3 X .025 + 3 X .000625 + • • •)

= 8 X 1.0769 = 8.615.

Exercises. Calculate to three decimal places the value of:

1. (0.995)5. 2. (1.05)7. 3. (3J,)4.

4. (2Uy. 5. (3.998)6. 6. (8.0125)2.

7. Calculate the value of (.99995)7 to seven decimals.



CHAPTER IV

Linear Equations

47. If X = Y, and 7n = n,

then X + ?n = F -f n, X — m = Y — n,

mX = nY, and — A' = - Y.m n

That is, if both members of an equation be increased or diminished,

multiplied or divided, by the same or equal quantities, the results

are equal.

Also if X =Y, then X'* = F",

n being an integer; that is, if both members of an equation be raised

to the same iyitegral power, positive or negative, the results are equal.

If A' = F, then VaT = VF,

provided the corresponding nth roots of X and F are selected.

If X-\-m= Y,

then subtracting m from both members,

X =Y-m.

That is, a tertJi may be transposed from one side of an eqiiation to

the other provided its sign is changed at the same time.

When the members of an equation involve sums or differences

of fractions, the equation may be cleared of fractions by multiply-

ing both members by the L. C. D. of the several fractions.

48. Linear Equation.— If a: be an unknown quantity related

to the known quantities a and b through the equality ax -\- h = 0,

this equation being called the standard form of the linear equation

in one unknown, we obtain the value of x as

b
X =

a

37
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Every linear equation in one unknown may he solved by reducing

it to standard form and applying the last formula.

The reduction of an equation to standard form will involve

some or all of the following steps:

1. Clearing of radicals. (33, after exercise 137.)

2. Clearing of fractions.

3. Expanding products or powers of polynomials.

4. Transposing and cancelling.

5. Collecting terms.

To verify the value found, substitute it in the given equation.

The result should be an identity.

49. Example 1. Solve for x: {I + b) x + ab = b (a + x)+ a.

Expanding the products: x+i^+(^ = aJf+Mx + a.

Cancelling like terms: x = a

Check: (1 + b) a + ab = b {a + a) + a.

Example 2.
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.ence between the two members of tlie equation as small as we

please; for this difference is

_l 1 ^ -2
rc+1 X — I .T^ — 1

For brevity we say that x = <^ is a solution of the equation,

meaning thereby that as increasing values of x are substituted,

the equation is more and more nearly satisfied.

Substituting formally x = oo, we obtain

^ ^ or = 0.
00 + 1 c

The equation of example 2 of (49) admits the solution a; = ^.

This will be evident on putting cc for x in

2'^a; + 2 2x 2"^
re*

51. Exercises. Solve for x, including infinite solutions when

present

:

1. 5 (a -x) =3(6 -x).

2. pix -I) +x = q - p.

3. a (bx — e) = ae — abx.

. m — X _x — n

6.
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The solution of the equation is that value of x which reduces the

binomial to 0. For brevity, let us represent the binomial by y,

so that

y = aoc + b.

Then we want that value of x for which y = 0. If now we form

a table which gives the values of y corresponding to a series of

assumed values of x, we may obtain from it by inspection the

exact or approximate value of x for which y is zero.

Example.

Let 2 a; - 1 = so that y = 2 x - 1.

Corresponding values of x and y are:

X =-2, - 1, 0, +1, +2, + 3, . . . .

y =- 5, - 3, - 1, +1, +3, + 5, . . . .

By inspection we see that y = when x Ues between and 1.

53. Graph of the Equation y = 2 x — l. — We shall now repre-

sent the corresponding values of x and y graphically.

Divide the plane of the paper into four quarters or quadrants

by drawing two mutually perpendicular lines, XX and YY,

intersecting at 0. (See figure.)

Adopting any convenient unit of

,, ,t ,j length (say one-fourth of an inch, or
~'

''^^' ' one side of a square of the cross-

section paper), mark on XX a series

of points whose distances from

shall equal the assumed values of x. When x is positive, the

distance is laid off to the right from 0; when x is negative, to

the left.

In this way all positive and negative integral values of x are

represented by a series of segments having a common starting

point 0, and ending in a series of equally spaced points on the

line XX, each of which represents an integral value of x. Non-

integral values of x are represented by segments whose end points

fall between two points representing integral values. Thus in

the figure are marked the points corresponding to .r = ±1, ±2,

±3, H-2^ and -If.
Now to represent the value of y corresponding to a given value

of X, mark the representative point of x on A^Y, and at this point

lay off a segment perpendicular to XX and having a length equal
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But y2 - yi = M2P2 - Ml Pi = M.Po - M.H = HP2;

?/3 - 1/2 = il/sPs - M2P2 = KPs;

X2-X1 = OM2 - OMx = M1M2 = PiH;

and 0:3 - 3:2 = OM3 - OM2 = M2M3 = P2K.

Substituting these in the two fractions above we obtain

HP2^KPs
PiH P2K

Therefore A P1HP2 is similar to A P.KP^.

Hence the points P\ , P2, P3 he on a straight hne.

Theorem: The graph of the equation y ^ ax -{-b is a straight line.

Corollary: To construct the graph of the equation y = ax -\- h,

construct two points on it and draw a straight line through them.

55. Exercises. Draw the graphs of the equations (each set

to the same reference Hues):

1. y = X + 1, 2 2/
= 2 .T + 2, 5 X = 5 X + 5, -^ 2/ = i X + |.

2. 2/ = 3 X - 4, 2 ?/ = 6 X - 8, % = 3 Lc - 4 /t.

3. 2/ = x + l, 2/=x+2, ?/=x+3, ?/=x-l.
4. 2/ = 3 X - 4, 2/ = 3 X - 2, 7/ = 3 X, 2/ = 3 X + 1.

5. 2/=:c + l, 2/
= 2x + l, 2/

= 3x + l, 2/ = ix 4jr*.

6. 2/=3x-4, 2/
= 6x-4, 2/

= 9x-4, 2/ = ix --4.

7. 2/=-^ + l,2/=-3x-4.
8. 2/ = -c - 1, 2/

= 3x + 4.

Explain the effect on the graph of 2/
= ax + 6, of

:

9. Multiplying the equation through by a constant.

10. Changing the value of h.

11. Changing the value of a.

12. Changing the sign of h.

13. Changing the sign of a.

56. Coordinates. — Divide the plane into four quadrants by

the lines XX and YY as before, and let P be any point in the

II
,

I plane (see figure), obtained by laying off a

[/' pair of corresponding values of x and y.

\}i The position of P is completely determined
^ ^ I

^—\—^ as soon as x and y are given. Therefore

P^ x and y are called the coordinates of P,

X being called the abscissa, and y the

III IV ordinate.

A point whose coordinates are x and y is referred to as the point
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The four quadrants of the plane are numbered consecutively

as in the figure, and are called the first quadrant, the second quad-

rant, and so on.

The line XX is called the axis of x, and YY the axis of y.

It is evident (definitions of x and y in (53)) that the signs of

the coordinates in the four quadrants will be as in the following

table:

Quadrant Abscissa Ordinate

I + +
II - +

III

IV + -

57. Linear Equation in Two Variables.— If x and y are unre-

stricted, the point {x, y) may have any position in the plane. But
when a relation between x and y is given, as y = 2 x or y = x -j- 1, or

2 X — 3 y -\- 4: = 0, the point (x, y) is thereby restricted to a defi-

nite path, which we have already called the graph of the equation.

A relation of the form Ax + Bij + C = is called the general

linear equation in two variables.

Theorem: The graph of the linear equation Ax -\- By -\- C — is

a straight line.

j^ (J
Proof: If 5 7^ 0, we can write ?/ = — 77 a: — 75 , which has the

t> li

form y = ax -\-b. Therefore the graph is a straight line when
5 7^ 0.

(7
If 5 = 0, the equation reduces to Ax -{- C = 0, or x = —^'

unless A = 0. But if A = and B = Q, then C = and the equation

vanishes identically. Excluding this, we may reduce Ax -\- C =
C

toa:= — -j)Ora: = a constant. But this is a straight line parallel

to the 7/-axis. Therefore the given linear equation represents a

straight line. (Hence the term " linear " equation.)

Exercises.

4 C
1. Show that the equations Ax -\- By + C = and y = — '.,x — - have

the same graph.

2. Show that the equations Ax + By + C = and kAx + kBy + kC =
have the same graph, k being any constant.

3. How is the graph oi Ax -{ By + C = aff(;ctcd by a cliangc in C?
inBfm Af
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58. Use of the Graph.— When any two variable quantities are

connected by a linear equation, the relation between them can

always be represented graphically by a straight line. It is only

necessary to consider the two quantities as the coordinates of a

point.

Example 1. A man starts 5 miles south of A and walks due north at the

rate of 3 miles an hour. How far is he from A at the end of x hours?

Solution. Let y be the required distance. Also

let y be negative to the south of A, positive to the

north. Then the relation between y and x is

3x -5.y

Sx

The graph is shown in the figure. Here one square

on the horizontal scale represents one hour, and one

square on the vertical scale represents one mile.

Exercise. By inspection of the graph, find the dis-

tance from A at the end of 0, 2, 3, 4^ hours respec-

tively. Compare with the values obtained from the

equation.

In this example negative values of x and the corre-

sponding values of y may be interpreted as follows:

Let the time be counted from the moment when the

man, supposed to be walking due north continuously

at the rate of 3 miles an hour, arrives at the point 5

miles south of A. Let time after this moment be

called positive, and before it, negative. Thus, 3 hours

before this moment would be represented by x = — 3. The corresponding

value of 2/ is — 14, that is, the man was

14 miles south of A.

Example 2. The relation between the

readings on the scales of a Centigrade

and a Fahrenheit thermometer is given by

the equation

C = UF - 32).

Draw the graph.

We shall retain the letters F and C
instead of replacing them by x and y.

The graph is shown in the adjacent figure. From it the reading of either

scale corresponding to a given reading of the other may be at once read off,

with an accuracy of about 1°.

Exercise. Read ofT the values of C corresponding to F = — 40°, F = 0°,

F = 57° respectively; also the values of F when C =- 30°, 0°, + 21°.

Example 3. A volume of gas expands when the temperature rises and con-

tracts when the temperature falls according to the law

V = I'O (1 + 273 0,
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6. The age of a boy is three times that of his brother, and their combined

ages make 16 years. How old is each?

7. In what proportion must two Hquids, of specific gravities 1.20 and 1.40

respectively, be mixed to form a liquid of specific gravity 1.25?

8. Two boys start together and walk around a circular half-mile track

at the rates of 3 V and 4 miles an hour respectively. After how many laps will

they pass each other?

9. A can do a piece of work in 3 days, B in 5 days. How long will it take

them both to do it?

10. A can do a piece of work in a days, B in 6 days. How long will it take

them both to do it?

11. A can do a piece of work in a days, B in 6 days, and C in c days. In

how many days can they together do it?

12. At what time between 4 and 5 are the hands of a clock together?

13. At what time between 10 and 11 are the hands of a clock at right angles?

Opposite each other?

14. The sum of the ages of A, B, and C is 60 years. In how many years

will the sum be 5 times as great as it was 10 years ago?

15. Water flows into a cistern through two pipes A and B, and out through

a third pipe C. The cistern can be filled by A in 1 hour, by B in 45 minutes,

and emptied by C in 36 minutes. How long will it take to fill the empty cis-

tern when all three pipes are running?

61. Simultaneous Linear Equations. — Let there be given two

linear equations containing two unknown quantities x and y, as

ax -\- hy -\- c = 0,

a'x + h'y + c' = 0.

It is required to obtain all pairs of values of x and y which sat-

isfy both equations simultaneously.

First Method— By Substitution.— Solve one of the equations

for either of the unknowns in terms of the other; substitute the

value so found in the second equation, thus obtaining a linear

equation in one unknown; solve for this unknown and then

obtain the other by substitution in either of the given equations.

Check. Substitute the values of x and y in the equation not

used in the last step of the solution.

Example. Solve for x and y :

^^+x = 15 and ?^ + y = 6.

Clearing and simplifying:

4 X -f 2/ = 45 and x -h 4 ?/ = 30.
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From the first of these,

Substituting in the second

Hence

Then

X - y
Check.

2/
= 45 - 4 x.

z + 4 (45 - 4 x) = 30.

15 X = 150 or X = 10.

?/ = 45 - 4 X = 5.

10
+ y + 5 = 1+ 5

Second Method— By Elimination. — Multiply the first equa-

tion by a', the second by —a, and add the resulting equations

together. This eliminates x, and yields a linear equation in y

alone, from which y may be found. Similarly x is found by mul-

tiplying the first equation by h' , the second by -6, and adding.

The proper multipliers for the two eliminations are conveniently

indicated thus:

h'
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2. The given equations are inconsistent.

If a = ka' and h = W , but c j^ kc', then the given equations

are self-contradictory. For if we subtract k times the second

equation from the first, we obtain c = kc', which is not true.

In this case there is no finite solution possible. For if we assume

X = xi and y = yi to he a, solution of either equation, the other

equation will not be satisfied by these values because c 7^ kc'.

63. Graphic Solution of Two Simultaneous Linear Equations.

Let the equations be

(1) ax -{- by + c =0,

(2) a'x + h'y + c' = 0.

The graph of each equation is a straight line.

Suppose Li and L2 (figure) to be the graphs of

equations (1) and (2) respectively. Then the coordinates of any

point on Li, as Pi, satisfy equation (1), and of any point P2 on

L2 satisfy (2). Hence the coordinates of the intersection P of- Li

and L2 satisfy both equations simultaneously and give the required

solution.

Exceptional Cases.

1. The given equations are not independent.

Then, as before, a = ka', b = kb', and c = kc'. The lines Li

and L2 will coincide and have an infinite number of common points.

2. The given equations are inconsistent.

Then a = ka', b = kb', but c 7^ kc'. The lines Li and L2 are

now parallel to each other, but not coincident. Hence they have

no common point (except at infinity). Including the infinite

solution is equivalent to the statement " parallel lines meet at

infinity."

64. Exercises. Solve for x and y, including graphical solu-

tions:

1. 2x + y = 11.

3x —
2/
= 4.

2. 3a; + 8y = 19.

3x-y = 1.

3. 2X+7J =47.

X + y = 15.

4. 3x+42/ = 85.

5a; + 4?/ = 107.

5x + 7y
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(b) It may happen that two of the equations can be expressed

as simple multiples of'the third. Then any solution of the third

equation is also a solution of the other two. Hence again there

exists an infinitij of solutions, since we may choose for two of the

variables any value at pleasure and obtain the corresponding

value for the third.

2. The equations are inconsistent.

In this case the equations in x and y obtained by eliminating

z are also inconsistent. Hence there is no solution (except the

infinite .solution)

.

67. We shall not discuss here the graphic solution of three linear

equations in three variables. Interpreted graphically, each of the

equations (1), (2) and (3) represents a plane in space. In general,

three planes meet in a single point, giving one and only one solu-

tion. The exceptional cases are:

1. (a) The three planes meet in a common line. Hence any

point in this line gives a solution.

(b) The three planes coincide. Hence any point in one of

the planes is a solution.

2. The three planes are parallel. No solution, except infinity.

(" Parallel planes meet at infinity.")

68. Four Equations in Four Unknowns.— Solution. Eliminate

one of the unknowns from three different pairs of the four given

equations. The three resulting equations can be solved for the

other three unknowns. The fourth unknown is then found by

substituting these three in one of the given equations.

Check. Substitute the values of the four unknowns in one of

the equations not used in the last step of the solution.

Exceptional cases arise, quite analogous to the preceding. We
shall not discuss them here.

The method of solution outlined above is evidently applicable

to any number of linear equations in the same number of variables.

A more convenient method involves the use of determinants.

(Chapter XVI.)

69. Exercises and Problems.

^' 4 + 6 " ^^"- ^- 3 + 2 " 3

3 8 2" 2"'"3 a'
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, x+y y -X
^- ~Y + 2

X x + y = 5.

4.
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= 0.

= 0.

+ 3=0.

= +1=0.

0.

35. 2 X + 3 2/ = 12.

3x + 22 = 11.

3 2/ + 4 z = 10.

li X + n y = 10. 38. x + 2 ?/ + 3 z = 32.

25 X + 2i 2 = 20. 2 X + 3 y + 2 = 42.

3i 2/ + 3i 2 = 30. 3 X + 2/ + 2 2 = 40.

39. U^=2. 40. -^ = 1-
y z X + 2/ 5

' + '=*• ^-s-X z X + z 6

1
,

1 ^g _y^ ^1.
X 2/ 2/^27

41. X + 2 2/
= 5. 42. 2/ + 2 + w = 2. 43. 3 x + 2/ + z = 4.

2/ + 22=8. 2 + M+x = 3. x+42/ + 3m = 6.

2 + 2u = ll. m+x+2/ = 4. 6x+z + 3u = 8.

M + 2x = 6. x+2/+z = 5.

.

82/ + 32 + 5U = 10.

44. Find two numbers whose sum is 1735 and difference 555.

45. If at a given place the longest day exceeds the shortest night by
'8 hours 10 minutes, what is the duration of each?

46. The sum of two numbers is 1000. Twice the first plus three times the

second equals 2222. Find the numbers.

47. The annual interest on a capital is $180; at a rate of interest \\%
higher, the annual interest would be $240; find the capital and rate of interest.

48. A farmer sells 200 bushels of wheat and 60 bushels of corn for $252;

60 bushels of wheat and 200 bushels of corn would bring, at the same price

per bushel, $203; find the price per bushel of each.

49. Two points move on the perimeter of a circle 999 ft. long; the one point,

moving four times as fast as the second, overtakes it every 37 seconds; find

the speed of each.

50. A vat of capacity 450 cu. ft. can be filled by two pipes. If the first

pipe flows 3 minutes and the second 1 minute, 40 cu. ft. are discharged; if the

first pipe flows 1 minute and the second 7 minutes, 60 cu. ft. are discharged.
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How long will it take both pipes to fill the tank, and what is the discharge per

minute of each pipe?

51. How many pounds of copper, and how many of zinc, are contained in

124 pounds of brass (alloy of copper and zinc), if, when placed in water, 89

lbs. of copper lose 10 lbs. in weight, 7 lbs. zinc lose 1 lb., and 124 lbs. brass

lose 15 lbs.?

52. An alloy of gold and silver weighing 20 lbs. loses 1| lbs. when placed

in water. How much gold and how much silver does it contain, if gold, when

placed in water, loses I'g of its weight, and silver xV of its weight?

53. Find the lengths of the sides of a triangle if the sum of the first and

second is 30, of the first and third 33 and of the second and third 37.

54. Find three numbers which are in the ratio of 2 : 3 : 4 and whose sum
is 999.

55. The contents of three measures are as 4 : 7 : 6; 10 measures of the

first kind, 4 of the second, and 2 of the third together contain 20 gallons. How
much does each measure contain?

56. A vessel may be filled by each of three measures as follows : by 4 of the

first and 4 of the third, or by 20 of the first and 20 of the second, or by 28 of

the first and 3 of the third. Also, the three measures together contain 29

pints. Find the content of each measure.

57. A vessel can be filled by three pipes: by the first and second in 72

minutes, by the second and third in 2 hrs., and by the first and third in 1|

hrs. How long will it take each pipe alone to fill the vessel?

58. A and B can do a piece of work in 12 days, B and C in 20 days, A and

C in 15 days. How long will it take A, B, and C, working together, to do the

job?

59. Three principals are placed at interest for a year, A at 4%, B at 5%,
C at 6%; the interest on A and B is $796, on B and C $883, and on A and C
$819. Find the amount of each principal.

60. Two bodies move on the circumference of a circle; when going in the

same direction they meet every 30 seconds, and when going in opposite direc-

tions every 10 seconds; in the second case, when they are 30 ft. apart, they

will again be 30 feet apart after 3 seconds. Find the speed of each body and

the radius of the circle.



CHAPTER V

Quadratic Equations

71. Suppose we wish to find two numbers whose sum is 5 and

whose product is 6.

I^et X = one of the numbers;

then 3 — a; = the other number,

and x{5 — x)= Q or x~ — 5x-{-Q = 0.

To determine x we must solve this equation.

Definition. An equation of the form

rtic^ -\-bx -\- c = 0,

where a: is a variable and a, b, c are constants, is called the gen-

eral equation of the second degree in 07ie variable, or, a quadratic

equation in x.

Methods for Solving the Equation ax^ + 6x + c = 0.

72. 1. By Factoring. When the trinomial ax^ -\- bx -\- c can

readil}^ be factored, then each factor, equated to zero, gives a

value of X.

Example. x2 - 5 x + 6 = 0, .

or (X - 2) (x - 3) = 0.

X - 2 = or X - 3 = 0.

Hence x = 2 or x = 3.

73. 2. By Completing the Square.

(a) The equation is reduced to the form

(x + /i)2 = k,

whence x + h =± Vk, and x =- h ±Vk.

This reduction is effected as follows :

Given ax- + fex + c = 0.

Transpose c : ax- + bx = — c.

54
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. ,
b c

Divide by a: ^*'
"^ a^ ^ "

a'

Add l^j to both members:

h , / b\- c , / h

or,

a \2a) a \2a

^Ll
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74. 3. By Formula. In (72), by completing the square accord-

ing to either method, we obtained

— b ± Vb^ — ^ac
Of.
= _

2 a

Any quadratic equation in x may be solved directly by means

of this formula, by merely inserting for a, h, and c their values

from the given equation. The formula should be carefully com-

mitted to memory.

Example. 2 x2 + x - 6 = 0.

- l±Vl-4X2X((-<
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For, in the first case the radicand in the formula for x is positive,

hence the square roots are real; in the second case, the radicand

vanishes, and the two values of x reduce to the common value

— 6 -i- 2 a; in the third case the radicand is negative, hence both

square roots are imaginary.

The expression 6^ — 4 ac, on whose value depends the nature of

the roots, is called the discrhninant of the equation ax- -{-bx-{-c = 0.

When the discriminant vanishes, the roots are equal; ax^ + 6x + c

is then a perfect square.

77. Exercises. — Without solving the equations, determine the

nature of the roots of:

1. Exercises 1-10 of (74). 6. ^x^-hx-i^O.

2. 4x2+4x + l=0. 7. 0.1x2+0.5x+0.8 =0.

3. x^+x + l =0. 8. 1^ x2 - 6J x + 8} = 0.

4. 6x2 +2X-1 =0. . 9. ^^2 -ix + ?j =0.

5. 9 x2 + 12 X + 4 = 0. 10. 0.06 x2 + 0.22 x + 0.08 = 0.

For what values of the Hteral quantity involved in the following equations

will the roots be real and unequal, equal, or imaginary respectively

:

11. x2 +2x+c = 0. 18. 2x2+4/ix -/i2 =0.

12. 4 x2 + 4 X + ;i = 0. 19. 2x2 + 4 ax - a = 0.

13. 3x2 - 2x - A; = 0.
• 20. ax2 + 2x + 1 = a.

14. ^ x2 - J X + 4 a = 0. 21. a2x2 + ax + 5 = 0.

15. x2 + 2 ?jx + 4 = 0. 22. 2 cx2 + 3 X - c2 = 0.

16. 3x2 - 4/cx + 5 = 0. 23. (l + k) x^ + x - k = 0.

17. 6 x2 + - X - 3 = 0. 24. - + ^ X + —^ = 0.
7n n 2 n + 1

78. Relations between the Coefficients and Roots of a Quadratic

Equation. — The roots of the equation

ax^ -f- 6x + c =

Xi =

Hence

_ 5 _^ V62 - 4 ac - 6 - V6-' -
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That is, if the equation he divided by the coefficient of x^, the new

coefficient of x, with its sign changed, equals the sum of the roots;

the new constant term equals the product of the roots.

79. Factors of the Trmomial wx^ + &x + c.— If xi and X2 be

the roots of the equation ax- + bx + c = 0, the trinomial is divis-

ible by X — xi and x — X2. But

(x — xi) {x — X2) = X- — {xi -\- X2) x + a;ia;2

. , 6 , c= x~ -\- - X -\

a a

Therefore a{x — xi){x — Xo) = ax^ + bx + c.

Hence to factor the trinomial ax- -\- bx -\- c, place it equal to

zero and solve for x; subtract each root from x, form the prod-

uct of these differences and multiply it by a.

80. Exercises.

1. Find the sum and the product of the roots of the equations in exercises

1-10 of (76).

Form equations whose roots are:

2. 2, 3; 4, -1; -2, -1.

' 3. a, 2 a; p, q; m + n, m — n.

4. V^^, - V^T; 1 + V^^, 1 - V^^; a + b V^, a-b \f^^.

5-14. Factor the left members of the equations in exercises 1-10 of (74).

15-24. Same for exercises 1-10 of (76).

25. Show that the equation y = x- + bx + c cannot have a fractional root

if b and c are integers.

81. Graphic Solution of Quadratic Equations. — In order to

solve the equation

ax^ + bx -\- c = Q,

we must find the values of x which reduce the trinomial ax^ +
bx -\- c to zero. When a, b, c are given numerical values, the

required values of x, when real, may be obtained, exactly or

approximately, by trial.

Consider, for example, the equation

2 x2 + a; - 6 = 0.
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0,
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values of x, in the second for two equal values of rr, and in the

third for no real value of x.

These three cases are illustrated in the figures below.

IS
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Example 3. (2 x2 + 5 x)2 - 6 = 2 x2 + 5 x.

Solve for 2 x2 + 5 X as the unknown.

(2 x2 + 5 x)2 - (2 x2 + 5 x) - 6 = 0.

2 x2 + 5 X = ^-^ = 3 or - 2.

2x2 + 5x=3 or 2x2 + 5x= -2.

X = 1 or — 3; or, X = — I or — 2.

Exercise. Verify the answers in the above examples by substitution.

Example 4.
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6. ^Jx + 3 + Va;+8 = 5 V^

6. V2x+ l+ V7x-27 = V3a;+4.

7. Vx+^ + V3x -3 = 10.

8. Va; + 17 + Va; -4 = I V2x.

9. V2a; + 1 + Va: - 3 = 2 V^-

10. V12+X = V7a;+8 - 2.

4 4
15

16.

17.

2/ + V4

5

y - ^/4 -y^

5

X + \/x^ + 5 X - Va;2 + 5

4^=^ = 1+^(757-1).
VS 2 + 1 2

11.

12.

13.

14.

12_
'

7

Vx2 + X + 3 ^3_

V2x2+5x-3 ~4

V3x2+x + 5 ^3_

V4x2 -x + 1 2

V9x2+6x + l ^3_

Vl8x2-3x-2 2

V9 x2 + 6 X + 1 ^ _ 3.

Vl8x2-3x-2 2

18.
^
/ ^ + 3 V2 y + 1 = 7 V«^.

19.

V2t^ + 1

V3s +
V5s = V3s + 1.

20. V7iT4 +iUiii = 7 V4^

21.

V4<

V3 x2 + 1 - V2 x2 + 1 _1
V3 x2 + 1 + V2 x2 + 1 7

(Or, by composition and division rationalize the denominator.)

22 V27 x2 + 4 + V9 x2 + 5 ^^
'

V27 x2 + 4 - V9 x2 + 5

„« %/5x 4 + X _ Vix + 1

VSx - 4 - VS - X V4 X - 1

24.
V2 V2
X Vx + X2 1 +

\/x2 - 16 + Vx + 3 =

14.

7
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30.

X + m _p — X

X — m p + X

n — X _ X + p
n -\- X X — p

a^ X X

X ft2 a2 _ ft2

ab — X _ b — ex

b — ax be — X
36.

31. ?i±i^+^iziA^ = 2x4.

1

^•
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59. As in 58, when the original dimensions are a X b inches.

60. State some values of a and b for which exercise 59 is impossible.

61. Find the radius of a cylinder whose height is 10 feet, if the total sur-

face in square feet must equal the volume in cubic feet.

62. As in 61, except that total surface equals twice the volume.

63. As in 61, except that total surface equals n times the volume. For

what values of n is the problem impossible ?

64. What number exceeds twice its square root by 3 ?

65. The sum of the ages of a father and his son is 80 years and the product

of their ages is 15 times the sum; find the age of each.

66. A number consisting of two equal digits is 3 less than 4 times the

square of one of its digits; find the number.

67. For what real values of x is x^ + 10 x + 9 positive ? zero ? negative ?

(Graph.)

68. Show that 6 + 2 a + a^ cannot be negative if a is real. (Graph.)

69. Show that 3 a — a^ — 5 cannot be positive if a is real. (Graph.)

70. The difference of the cubes of two consecutive integers is 127. What

are the integers ?

71. Two trains start from a station, one going due north 5 miles an hour

faster than the other, which goes west; at the end of four hours they are 60

miles apart. Find the speed of each.

87. Simultaneous Quadratics.

Definition. The degree of a monomial involving one or more

literal quantities is the sum of the exponents of such literal quan-

tities as may be specified.

For example a%™y" is of degree m\n.x,nmy,m + n in x and y,

m -\- n -\- y m a, X and y.

The degree of a polynomial is that of its term of highest degree.

A quadratic equation in several variables is one in which all the

variable terms are of the first or second degree, at least one term

of the second degree being actually present.

88. Solution of Two Simultaneous Equations in Two Variables,

one being Linear, the other Quadratic.— The most general forms

of such equations are:

(1) px + qy -\- r = 0,

(2) aa;2 + by^ -\- cxy -\- dx -\- ey -{- f = 0.

Solution.

1. Solve (1) for one of the variables in terms of the other. Thus

:

px + r
y = — '

2. Substitute this value in (2), obtaining a quadratic equation
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3. Solve this quadratic for x, and let its roots be Xy and X2.

4. The corresponding values of y are now found by substituting

these values for x in the first step. Thus:

Tpxi + r , vx2 + r
Vi = — ^-——— ' and 7/9 = — ' •

Example. (a) x + y = 1,

(b) a:^ + 2/2 = 4.

From (a), y = I — x.

Substituting in (b) : x'- + {1 - xy = 4 or 2 x^ - 2 x - 3 = 0.

Hence xi = 5 + i V7; xa = 5 — i V"-

Then ^1 = ^ - i V7; 2/2 = I + W7.
Reducing to decimals, we have approximately

(xi, 2/1) = (+ 1.8, -0.8) and (x2, 2/2) = (-0.8, +1.8).

In this case there are two distinct real solutions.

89. Nature of the Solutions of Equations (1) and (2) of (88).—
The values xi and X2 obtained in the third step of the solution in

(88) are either real and unequal, real and equal, or both imaginary.

Then the values of y obtained in the fourth step will be of the same
nature as the values of x.

Hence there are always two solutions, which may he real and un-

equal, real and equal, or imaginary.

90. These three cases may be illustrated by means of the

equations,

(1)

(2)

Then x^ + {k - xY

Hence xi = h {k + V

yi = i{k- VS-F) and 2/2 = U^' + Vs"^^/^).

These solutions will be

real and unequal if A- < 8;

real and equal if A;- =8;
imaginary if k^ > 8.

91. Graphic Solution of the equations

(1) x-hy=l,
(2) x^ + y^ = 4.

x + y=k,
x' + t = 4.

= 4, or 2x?
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93. Standard Equation of the Circle.—
The equation

x- + if = r'

is satisfied by the coordinates of every

point on a circle of radius r, center at the

origin, and by no other point. It is called

the standard equation of the circle.

x' + y- = 7^

Exercises. Solve for x and y, and check care- Circle, radius r, center at

fully by graphs.

,x2 + 2/2

(x-y =0.

^' U-y = 2.

4.
(X2+2/2

\2x + y
7.

( X2 + J/2 = 4,

origin

X2 + 2/2 =9,
\3x + 4y = 12.

[x2+2/2 =9,
! 4 X - 5 2/ = 20.

;4a;2 + 42/2 = 1,

|3x-2/ = l.

(x2+2/2 = 1, (x2 + 2/2 = 16,
* (x-2/ = ^A2. (2x -3?/ = 4.

10. Determine A; so that the line x + y = k shall be tangent to the circle

a;2 + 2/2 = 4.

11. Determine m so that the line y = mx + 5 shall touch the circle

x2 + 2/- = 5.

12. As in 11, for the line y = mx + 2 and the circle x- -\- y- = f.

94. Consider the equations

x-y = 1,

9^4
Proceeding as in (88), we obtain

Xi

2/1

+ 12 V3 ^
13

-4 + I2V3
13

2.3
12%/^

1.3

13

-4

0.9

12 V3
13

1.9

Graphic Solution. — All values of x and y which satisfy the

first equation are the coordinates of points on a straight line.

We now plot a series of points whose coordinates satisfy the

second equation, which we solve for y in terms of x and write in

the form

y=±\ V36-4z^'.

Whena:=-3, -2, -1, 0, +1, + 2, + 3,

y= 0, ± 3 Vo, ± 5 V'2, ± 2, ± ^ V2, ± § Va, 0.
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Y
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\Zx + y = 3.

\y = 2x.

( .t2 = 4 y,

\x+2y-

:
2 X + 5 2/ = 10.

;x2 = -4?/,

!2/-2x = l.

10. Determine k so that the line 3 x + y = A; shall touch the parabola

2/2 +4x =0.
11. Determine m so that the

line y = mx + 2 shall touch the

parabola t/2 = 8 x.

98. Consider the equations

x-2y = Z,

Hyperbola, '^^ - ^j
= 1

Straight Line, x— 2y = Z

The graphs are shown in

the figure.

The graph of the second

equation is an h3rperbola, a

curve consisting of two open branches which continually ap-

proach the diagonals, produced, of the dotted rectangle, but never

cross them; These lines are called the asymptotes of the hyper-

bola. is the center and A'A the axis of the curve.

Exercise. Compare the solution of given equation as obtained by formula

with that from the graph.

99. Standard Equation of the Hyperbola. — The equation

^3 ^.2

b"
= 1

always represents an hyperbola whose axis coincides with the

X-axis, and whose center is at the origin. The curve lies between

its asymptotes, which are the diagonals, produced, of a rectangle

whose sides are 2 a and 2 b, parallel to the coordinate axes,- with

its center at the origin.

The equation

^ _y^_ ^ _ ^
a^ b'

represents an hyperbola whose axis coincides with the y-axis.
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Hyperbola, -^ — vj = 1
a' h

Exercises, Solve and check by graphs:

4. ^ 9
~ 4

5x + 2/

1.

2.
\2x

-y-

32/

2/"

(X2-2/2

^ =36,

6.

2/ = 2.

erbola,
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except in isolated eases when it can be factored into linear fac-

tors, in which case it represents a pair of straight lines, or when

it is satisfied by the coordinates of a single point only, as

x2 ^ y2 = 0. The graph may also be imaginary, that is, the

equation cannot be satisfied by any real values of x and y,

as a;2 -f- i/2 = — 1.

The curves represented by the general equation of the second

degree are not restricted in position with respect to the coordi-

nate axes as are those shown in the preceding figures. The

center, vertices, axes and asymptotes may have any position

whatever, depending on the numerical values of the coefficients

a, 6, c, d, e.

All curves represented by equations of the second degree in

X and y may be obtained as plane sections of a circular cone. They

are therefore called conic sections.

102. Exercises. Give what facts you can about the curves

represented by the following equations, without drawing the

graphs

:

1. a;2 + 2/2 = 9. 11. x2 = 4 y.

2. 4 x2 + 4 2/2 = 16. 12. 4 x2 = 2/.

3. 3x2+3 2/2 = 15.

4. 4 x2 + 2/2 = 4.

5. x2 + 4 2/2 = 4.

6. 16x2+25 2/2 = 400.

7. 25x2 + 16 2/2 =400. »

8. 2x2+4 2/2 = 9.

9. 2/2=4 X.

10. 4 2/2 = X.

Construct the graphs of the preceding £

Construct the graphs of the equations:

21. x2 + 2/2 - 6 X - 8 2/ = 0.

22. (X - 2/)2 = 1.

23. 3x2+2x2/ + 32/2-162/ + 23=0.

24. x2 - 5 xy + 6 2/2 = 0.

25. 3 x2 + 2 2/2 - 2 X + 2/
- 1 = 0.

Solve graphically and by formula several of the preceding equations with

the equation

(a) x-2/ = 1. (b) 2X + 3 2/ = 6.

(c) x + 2/ = 0. (d) 2x-2/ =2.

13.
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103. Solution of Two Simultaneous Quadratics. — When both

quadratics are of tlie general form, as

ax~ + by- -\- cxy -\- dx -\- cy -\- f = 0,

a'x^ + b'y'~ + c'xy + d'x + c'y +/' = 0,

they cannot usually be solved by elementary methods. For, if

we solve one equation fOr y in terms of x say, and substitute in

the other, we obtain, after rationalizing, an equation of the fourth-

degree in X. Such an equation requires rather complicated pro-

cesses for its solution. We shall therefore leave aside the general

case and discuss some special cases, such as usually arise in the

practical application of algebra. We begin with some graphic

illustrations.

104. Graphic Solution. — Since each of the above equations

represents graphically a conic section, two such curves intersect

in general in four points. All real solutions are shown by the

intersections of the graphs, and may be read off, approximately

at least, from the diagram.

Whe7i the graphs intersect in less than four points (tangency is

counted as two coincident points of intersection), some solutions are

imaginary or infinite.

The various cases which may arise are illustrated in the figures

on page 74.

We proceed to consider some special cases of simultaneous

quadratic equations.

105. Case 1. Two quadratics, one of which is factorable.

Ride: Factor the equation, put each factor equal to zero, and

solve each of the resulting linear equations with the other quad-

ratic.

Rule for factoring a quadratic. Solve for y in terms of x (or x

in terms of y); if the quantity under the radical is a perfect

square the two values of y are of the form y = ax -{- b and

y = a'x + 6. The required factors are then

(y - ax -b) (y - a'x - b').

Graphically, the factorable quadratic represents a pair of

straight lines, the other quadratic some conic. Each straight

line may cut this conic in two real distinct points, in two real

coincident points, or in two imaginary points (i.e. does not cut at
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1 + ^ = 1 E_ + y = 1
9 4 9^4

Four real solutions, Four real solutions,

all distinct. two being equal.

t + t = l9^4
(x - iy+ if = y
Two real distinct

solutions, two
imaginary.

Two real and equal solutions,

two imaginary.

X' - 7/ = 1

X - y =Q
Two solutions, both infinite.

&Q
f-|' = l;i(x-6)^ + r = f
All four solutions imaginary.

xy = 1

xy = - I

Four solutions, all infinite.

The student is urged to draw, or to picture to himself mentally as

far as possible, graphs corresponding to all equations considered.

He should be able to recognize at a glance the standard forms of

equation of the conic sections.
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all). Hence the four solutions may be all real and distinct, or

equal in pairs, or imaginary in

pairs.

x2-2.Ti/-3i/2 =0,
x2 - 4 (/2 - 4 = 0.

Example 1.

The factors of the first equation are, by
inspection,

{x + 7j)ix -3y) = 0.

X + y = or X - 3 2/ = 0.
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Example 3.

SIMULTANEOUS QUADRATICS

0.

[106

i2x2-2/2
\x^ -Ay

- xy + 3 2/
- 2

0.

\
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Graphically, equations (1) and (2) represent two conies, and

equation (3) a third conic which consists of a pair of straight lines

in case the factors are real. Conic (3) goes through the inter-

sections of (1) and (2), since the coordinates of any point which

satisfy (1) and (2) will also satisfy (3). Hence, when the factors

of (3) are real, we obtain the intersections of (1) and (2) by finding

the intersections of either of them with a pair of real straight lines.

When these factors are distinct, there are two distinct lines, either

of which may cut the conic in two real and distinct points, two

coincident points, or two imaginary points. When the factors are

imaginary the lines are imaginary, and all four solutions are

imaginary.

Another method of solving two homogeneous equations in the

forms (1) and (2) is to put in both of them y = vx. Then divide

one equation by the other, and clear of fractions, after removing

the common factor x^. The result is a quadratic in v, whose roots

we may represent by vi and v-z. Then

y = v\X and y = vox.

Substituting these values in turn

in either of the given equations,

we have two quadratic equations

in X alone.

Example 1.
2x2

4x2/

3 x;/ + 4 =0,
5 7/2-3=0.

Transposing the constant terms we have

2 x2 - 3 x?/ = - 4.

4 x?/ - 5 2/2 = 3.

Multiplying the first equation by 3, the

second by 4, and adding,

6 x2 + 7 xy - 20 2/2 =
or (3 X - 4 2/) (2 X + 5 2/) = 0.

—



78 SIMULTANEOUS QUADRATICS [107

To solve by the second method, transpose the constant term as before,

then put y = vx.

4 !;x2 - 5 !;2x2 = 3.

2-3?; 4

4 V — 5 1^2

Clearing, etc., 20v'^ -7 v - & = Q.

Hence, ?; = f or — f

.

Therefore y = Ix or y = — Ix.

(These are the linear factors of the

auxiliary equation found above.)

Substituting these values of y in

either of the given equations, we find

X as before.

Example 2.

9 x2 + a;!/ + 2 ?/2 = 60,

8 x2 _ 3 a;?/ - 2/2 = 40.

The auxiliary equation is

6 x2 - 11 x?/ - 7 2/2 = 0,

or (2 X + ?/) (3 X - 7 2/) = 0.

Solving each factor with one of the

given equations we obtain

(xi, 2/i) = (2, -4); (X2, 2/2) = (-2,4);

Ellipse, 9 x= + xy + 2 2/2 = 60

Hyperbola, Sx^- Zxy -y- = 40

Straight lines, {2x + y) {3x - 7 y) =

The graphs are given in the figure.

Exercises. Solve for x and y:

(^^'^^^=(^'^) =

(x2 + 2/2 =9,

I x2 - X2/ = 10.

JX2-2/2
= 1,

(x^ — xy + y^ =

( 4 x2 - 9 2/2

\y^ + xy =

{xi, 2/4)
7__

V2'

_3

2V2}

(x2+2x2/ = 2,

1. *• (2x2/ -2/' =6.

( x2 + X2/ + 2/2 = 3,

1 2 x2 - 3 2/- = 6.

i2.r2 + X2/-3 2/2 = 2,

\x'--xy + 2y^ = l.

107. Case 3. The given equations are of the forms

ax- + by^ = c,

Rule. Consider a;^ and \f- as the unknowns, and solve by the

method of Hnear equations.
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Graphically, we have two conies in standard form. The four

solutions may all be real, or equal or imaginary in pairs.

Example, x- — 4 y^ = 4,

9 x2 + 16 2/2 = 144.

By elimination we obtain,

Hence x = ± 4 Vi§;

2/ = ± 3 VS.
Taking eitlier value of x with either

value of y, we obtain the four solutions.

The approximate values may be scaled

off from the Figure.
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"Substituting and reducing:

u* + 14 w2y2 + ?;4 = 9,

m2 + 3 y2 = 3.

Let u2 = s and v"^ = t.

Then s^ + U si + t^ = 9,

s + 3 < = 3.

Solving: (s, <) = (3, 0)or (f, I).

(If s and / be considered as the coordinates of a point, the equations in

s and t represent an ellipse and a straight line respectively.)

Since w = ± Vs and v =±^l,

we have (m, f) = ( ± Vs, o) or (±^' ±^
where the signs are to be taken in all possible ways.

Then

X = w+t; = VS, -V3, V3, -V3, 0, 0;

y =u-v = -\JZ, -\l2,, 0, 0, V3, - V3.

Here corresponding values of x and y appear in the same vertical line.

109. Case 5. Symmetric Solution.— This method of solution

is applicable to certain forms of symmetric equations, and may be

illustrated by some simple examples.

Example 1. x -\- y = 5,

xy = 4.

Squaring the first equation: x"^ -\- 2 xy + y"^ = 25.

Subtracting four times the second : x2 — 2 x?/ + 2/2 = 9.

Hence x - y = ± Z. .
'

But X + 2/ = 5.

X = 4 or 1 ; y = 1 or 4.

Example 2. (1) x^ + xy + y^ = 6.

(2) x2 - xy + 2/2 = 10.

Subtract (2) from (1) : 2xy =- 4, or xy -' - 2.

Add x2/=-2to(l): x2 + 2x2/ + 2/2 = 4, or x + y=±2.

Subtract 3 x?/ = - 6 from (1) : x2 - 2 X2/ + 2/^ = 12, or x -y =±2 V3.

Hence x = ± 1 ± Vs and 2/ = ± 1 T \/3.

Simultaneous values of x and y are then obtained by taking the same com-

bination of signs in these two results.
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110. Miscellaneous methods for solving two simultaneous

equations.

These methods depend on reducing the given equations, which

may be of higher degree than the second, to one of the cases

already discussed.

1. By Substitution.— This method has already been illustrated

in several cases; in (106) we made the substitution y = vx, in (107)

we put X = u -\- V and y = u — v, and in example 2 of (107) we

put u- = s and v^ = t. We shall give two more simple illustra-

tions.

1
Example 1.
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Substituting each of these values of x in either of the given equations, we

can solve for y and so complete the solution.

Example 2.

(1) ix'^y-x = l, {x(x2/-l)=l,

(2) ( a:%2 -x^- = 3; \ x'~ (x%2 _ 1) = 3.

Divide (2) by (1): x (xy + 1) = B.

Divide this equation by (1): ^ ^ ^
= 3.

Hence xy = 2.

Then from (2), x^ (4 - 1) = 3,, or x^ = 1, or x = ± 1.

But from (1), x (2 - 1) = 1, or x = 1.

In this case the value x = — 1 must be discarded.

Hence the only solution is x = 1, y = 2.

Examiple 3.

(1) x4 + y" = 1,

(2) X - y = 1.

Raise (2) to the fourth power and subtract from (1):

(3) 4 x3y - 6 x2y2 + 4 xy3 = 0.

Square (2) and multiply the result by 4 xy:

(4) 4 x3y - 8 x2y2 + 4 xy^ = 4 xy.

Subtract (4) from (3)

:

2 x2y2 = - 4 xy, or x2y2 + 2 xy = 0.

Hence xy = 0, or xy = - 2.

Solving each of the last two equations with (2) we have

(x,y) = (l,0), (0,-l),(^^^ , V^^j\—^' 2 }'

All four solutions also satisfy equation (1).

111. Summary of Methods for Solving Simultaneous Equa-

tions. — [Let the given equations be numbered (1) and (2).]

(a) Equation (1) linear, (2) quadratic.

Rule: Substitute from (1) in (2). Graph, straight line and conic.

(b) Equations (1) and (2) both quadratic.

Case 1. Equation (1) is factorable.

Rule: Put each factor separately equal to zero and solve with

(2) as in (a). Graph, two straight lines and a conic.

Rule for factoring: Solve for y in terms of x (or x in terms of y) ;

the quantity under the radical must be a perfect square.
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Case 2. (l) Ax' + Bxij -\- Cif= D; (2) A'x' -{- B'xy + CY = D\
Form the auxiliary equation, (1) X D' — (2) X Z> = 0. Factor

this and solve as in Case 1.

Second Method: Put y = vx in (1) and (2) and divide results.

Graph, two conies, centers at origin (except in case of parabola.)

Case 3. (1) Ax^ + By^- = C; (2) A'x' + BY = C.
Solve as linear equations for x^ and y~.

Graph, two conies in standard position.

Case 4. Symmetric Equations.

Put X = u -\- V and y = u — v.

Applicable to equations of higher degree.

Case 5. Symmetric Solution of certain symmetric equations.

(c) Miscellaneous Methods.

Exercises.

1.
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33. -u2 + y2 -I- uv = 67.

u+v = 9.

34. p^ + pq+q'^ = 79.

p2 _ p5 + g2 = 37.

35. r2+s2 +rs =25.

r +s =5.

r2 + -rs == 84.

2.

37. u + t' + u2 + i;2 = 162.

,, _ ,, 4- ^2 _ i,2 = _ 102.

38. p+g + p2 +q2 = ig.

y _ p + g2 _ p2 = _ 1.

39. a;2 + 2/2 + a; + 1/ = 18.

2xy = 12.

40. ;i2 + fc2 _ A; + /i = 32.

2 /ifc = 30.

41. x2 + y2 + X + 2/
= 168.

•Va;y = 6.

42. m2 + n2 - ?rt + n = 2400.

^/mn = 30.

43. 9tt2+t;2+3M + i' = 3042.

Vl6w = 48.

44^ ^3 _ s3 = 1304.

r - s = 8.

45. p* + ^ = 337.
.

p + 9 =7.

46. x" - 1/ = 609.

X - 2/
= 3.

47. u4 + ?^^ = 2657.

M+i; = 11-

48. m3 + n3 = 152.

m2 - mn + n^ = 19.

49. p + <7 + V/H^ = 20.

p3 + ^3 = 1072.

50. .t3 + 1/ = 280.

x2 - X2/ + 2/2 = 28.

51. m2 + 3 ifl = 7.

7 u2 - 5 wy = 18.

52. p3 -)- gS = 152.

p2q + pg- = 120.

53. x3 - 2/3 = 335.

X2/2 - x22/ 70.

54. s3 + i3 = 855.

St (s + = 840.

55. w3 - n3 = 602.

mn{n — m) = — 198.

56. W2y4 + 1,2 = 17.

W2;2 + y = 5.

57. xl -{-yi = 35.

xi + 2/^ = 5.

58. x2|/2 -18x2/ + 72 =0.

6x2 -17x2/ + 12 2/2 =0.

69. x4+x22/2+2/4 =91.

x2 - X2/ + 2/2 = 7.

60. x3 - 2/3 = 7 (x2 - 2/2).

x2 + 2/2 = 10 (x + y).

61. s6 + <6 = 65.

S4 + i4 = 17.

62. x2 + 2/2 = a.

x2 - 2/2 = 6.

63. X - 2/
= wi.

X2/ = n2.

64. 7^2 + g2 = a2.

p + g = 6.

65. Vw + V^ = «•

u + 1; = 62.

66. x2 + 2/2 = a (x - y).

x2 + 2/2 = b (x + 2/).

67. ax-by = m.

a3x3 - 632/3 = nx2/.

68. 6(x + 2/)
=a(x-2/)-

x2 + 2/2 = w2.

69. x* + 2/* = - 8-

X - 2/
= 2.

70. p* + g^ = - 9-

p -(/ = 3.

71. u* + t;4 = 175.

M — V = 5.

72. 7-2 -|- rs + s2 = a.

r3s + rs3 = 6.



SIMULTANEOUS QUADRATICS 85

73. l-i=l.
X y a
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yj 11. The floor area of two square rooms is 890 sq. ft., and one room is 4 ft.

larger each way than the other. Find the dimensions of each room.

(,^ 12. For 60 yards of cloth B pays two dollars more than A pays for 45 yards.

B receives one yard more for two dollars than does A. How much does each

pay per yard?

13. Two bodies moving around the circumference of a circle of length

1260 ft. pass each other every 157.5 seconds. The first body makes the

circuit in 10 seconds less than the second. Find the speed of each body.

14. The amount of a capital plus interest for one year is $22,781. If the

capital were $200 larger and the rate of interest \% larger, the amount in

one year would be $23,045. Find the capital and rate of interest.

15. A and B agree to do a piece of work in 6 days for $45. To finish

on time, they hire C during the last two days, and consequently B gets $2

less pay. If A could have done the work alone in 12 days, how long would

it take B and C, each working alone, to do it?

16. The quotient of a number of two digits divided by the product of the

digits is 3. When the digits are interchanged, the new number is \ of the

original. What is the number?

17. If the digits of a two-figure number be interchanged, the number is

diminished by 18. The product of the original and the new number is 1008.

What is the original number?

18. What number of two digits is 5 greater than twice the product of its

digits and 4 less than the sum of their squares?

19. A fraction is doubled by adding 6 to its numerator and taking 2 from

its denominator. If the numerator be increased and the denominator de-

creased by 3, the fraction is changed to its reciprocal. What is the fraction?

20. A and B start at the same time from two points 221 miles apart and

travel towards each other. A goes 10 miles a day. B goes as many miles a

day as the number of days until they meet diminished by 6. How far did

each one travel?

21. The fore wheel of a wagon makes 1000 revolutions more than the

hind wheel in going a distance of 7500 yards. Had the circumference of

each wheel been one yard more, the difference between the number of revo-

lutions would have been 625. Find the circumference of each wheel.

22. Find two numbers such that their sum shall be equal to 28, and the

sum of their cubes divided by the sum of their squares equal to 1456.

23. Two points, A on the x-axis 270 ft. from the origin and B on the

t/-axis 189 ft. from the origin, move toward the origin. After 10 seconds

the distance between them is 169 ft., and after 14 seconds, 109 ft. Find the

speed of each point.

113. Exponential Equations. — An exponential equation is one

in which the unknown appears in the exponent. Thus:

Vct^ =a2^-i; (m^+i)-^ = ^-2^-2; a^+i =62x-i^
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Exponential equations of the above forms may be solved by
reduction to ordinary equations by use of the principle that

if a" = a", then u = v,

or more generally,

if a" = fo", then w log a = t; log h.

Example 1. Vo^ = a^^-^.

This may be written a^ = a^-^-i.



CHAPTER VI

Ratio, Proportion, Variation

115. Definitions. The ratio of two quantities is their indicated

quotient.

Thus the ratio of a to 6 is r, or as it is usually written, a : h.

The numerator of the fraction, or the first term of the ratio, is

called the antecedent, the other term the consequent.

The ratio 6 : a is called the inverse of the ratio a : h.

Two ratios are equal when the fractions representing them are

equal.

a ma , ,

Since r = —
t' • • a -.0 = ma : mo.

mo

Hence, both terms of a ratio may be multiplied by the same (or equal)

quantities without altering the value of the ratio.

Similarly, ii m 9^ n, then a : b 7^ ma : nb.

Hence, if the terms of a ratio be multiplied by unequal quan-

tities, the value of the ratio is changed.

The compound ratio of a : 6 and c : d is ac : bd, that is, the ratio

of the product of the antecedents to the product of the conse-

quents.

In particular the compound ratio of o : 6 and a ib, or a^ : b'^, is

called the duplicate ratio of a to 6; a^ : b^ is called the triplicate

ratio of a to b, and so on,

A proportion is an equality of two ratios. Four numbers are

in proportion when the ratio of two of them equals the ratio of

the other two.

Four numbers a, b, c, d are in proportion if a : 6 = c : rf (often

written a : b :: c : d). Here a and d are called the extremes and

b and c the means. Also, d is called a fourth proportional t» a, b, c.

The numbers a, b, c, d, e, . . . are in continued proportion if

a -.b = b : c = c : d = d : e • • • .
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When three numbers a, h, c are in continued proportion, so

that a : b = b : c, then b is called a mean proportional between

a and c.

Since ^ = - or ac = b- we have b = ± *^lac. Also, c is called the
b c

third proportional to a and b.

116. Laws of Proportion.

1. In a proportion, the product of the means equals the prod-

uct of the extremes.

2. If two products, each containing two factors, are equal,

either pair of factors may be taken as the means, the other as

the extremes of a proportion.

When four numbers are in proportion so that a : b = c : d,

then they are in proportion

3. by inversion, or b : a = d : c;

4. by alternation, or a : c = b : d:

5. by composition, or a -{-b : b = c -j- d : d

, a c ,, «,i c
, I

a + b c + d\. /I

6. by division, ov a — b : b = c — d : d;

7. by composition and division, ot a -\- b : a — b = c + d : c — d.

8. Like powers (or roots) of the terms of a proportion arc in

proportion, i.e.,

\i a -.b = c -.d, then a^ .b'' = c^ : d^.

„ ..a c ^, a"" c"" \For if r = 3, then tt, = ^jr,-)
d b d' I

9. The products of the corresponding terms of any number of

proportions are in proportion, i.e., if

a : b = c : d, a' :b' = c' : d', a" : b" = c" : d", etc.,

then aa'a" • • • : bb'b" • • • = cc'c" • • • : dd'd" • • • .

/„ ., a c a' c' a" c" ,, aa'a" . . . cc'c" . . . \
For if T= 3' r7 = ^' r77=:7r/ •

• •
^
then vtt^jt

=
,,,„,

\ b d b' d' b d" bb'b" . . . dd'd" . . . /

10. In a series of equal ratios, the sum of the antecedents is

to the sum of the consequents as any antecedent is to its con-

sequent, i.e.,

ai : a2 = 6] : 62 = ci : C2 . • •

= ai + 61 + ci + • • •
: a2 + 62 + Co + • • • .
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Forif^^ = ^^=^-i=-
02 02 C2
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of the radius [c = f (r)]. The functional rolation is expressed by

c = 2 Trr.

Similarly, the area of a circle depends on the radius [A = f (r)].

The functional relation in this case is A = irr-.

Also, the cost of a piece of cloth depends on, or is a function

of, the price per yard; the running time of a train between two
stations is a function of the speed; the range of a gun is a func-

tion of the muzzle velocity.

119. Direct Variation.— A quantity y varies directly with an-

other quantify x when their ratio remains constant.

This is indicated by writing y o: x (read ''

y varies directly

as X ").

If k denote the constant value of the ratio of y to x, then

y oc a; is exactly equivalent to // = kx.

The constant k will be determined as soon as the value of y
corresponding to a single value of x (other than a: = 0) is

known.

Graphically, the relation between y and x is represented by a

straight line through the origin, the inclination of the line to the

X-axis increasing with the absolute value of k. The line is com-
pletel}^ determined by the origin (x = 0, ^
?/ = 0) and one other point.

If c be the circumference and r the

radius of a circle, then c oc r, for c = 2 ivr.

If we take tt = V. then c = V when r

= 1. The figure gives the graph.

Exercise. From the figure read off to
Horizontal scale = 10

,, , -i. iu 1 i-u r • times vertical scale
the nearest unit the lengths of circum-

ference of circles whose radii are .15 in., .33 ft., 1.27 mm., .87 cm.

respectively.

120. Inverse Variation.— When y varies directly as- > that is,

1 k
y cc - or y = -, then y is said to vary inversely as x.

When y varies inversely as x, this may be expressed by writ-

ing xy = k.

Graphically, the relation between x and y is then represented

by a rectangular hyperbola, whose asymptotes are the coordi-

nate axes.
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If t be the time, in hours, required by a train to run 10 miles,

and 5 the speed in miles per hour, then

,10 ,1
t = — or / cc -

s s

The figure gives the graph, only posi-

tive values being considered.

Exercise 1. From the figure read off to

tenths of a unit the times required to run

, .n 10 miles when s = 4.5, 7.8, and 15.6 miles
st = IQ

.

' '

per hour respectively.

Exercise 2. Construct a curve showing the possible dimen-

sions of a rectangle whose area must be 16 sq. ft. Show that

either dimension varies inversely as the other.

121. Joint Variation. — When a quantity varies directly as the

product of two others, it is said to vanj ivith them jointly.

Thus, if 2 oc xy, or z = kxy, then z varies jointly as x and y.

122. Exercises.

,' 1. Show that the area of a rectangle varies jointly as its dimensions.

/ 2. Show that the volume of a right cyHnder varies jointly as its base and

altitude.

3. Same as in 2 for a right circular cone.

4. Show that the volume of a sphere varies jointly as the radius and the

area of a great circle.

6.

6.

7.
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18. a^ +ab + h"- : a"- - ab -\-
h"^ = d^ -\- cd + d"- : c"- - cd + d"^.

19. a +h:c ^-d:: yja'- + 62 : Vc^ + d^.

20. Va^ + 62 : Vc2 + rf2 = ^/aS + 63 : \/cM^-
21. VoM^ : Vc2 + d2 = -s/oa - 6^ : Vc^ - d^.

If a : 6 = c : d and p : q = r : s, show that

22. p'^a" : r'"6" = g'"c" : s'"^".

23. (o + 6) (p - r) : (o - 6) (p + r) = (c + d) (g - s) : (c - d) (5 + s).

Solve for x:

27. The intensity of Hght varies inversely as the square of the distance

from the source. If the sun is equivalent to 600,000 full moons in brightness,

at how many times its present distance would it be of the same brightness as

the full moon?
28. The squares of the periods of revolution of the planets about the sun \„,--

vary as the cubes of their mean distances. The earth makes a revolution in

one year at a mean distance of 93,000,000 miles. Venus makes a revolution

in 225 days, Jupiter in 12 years. Find their mean distances from the sun.

29. In beams of the same width and thickness the deflection due to a cen-

tral load varies jointly as the load and the cube of the length. If a beam

10 ft. long is bent ^ inch by a load of 1000 lbs., how much will a load of

5000 lbs. bend a 30-ft. beam?

30. Two lights, one of which is twice as strong as the other, arc 10 ft. ^
apart, Where on the line joining them do they produce equal illumination?

26.
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The Trigonometric Functions

123. Consider any number of right triangles having a common
acute angle A, as ABid, AB2C2, and AB3C3, in the figure.

(j^
Since these triangles are simi-

lar, homologous sides are propor-

tional, and therefore

B3C3

ACs
= X.

X (lambda) denoting the common
value of the ratio of the side

opposite Z A to the hypotenuse in the several triangles.

Evidently, in every right triangle having an acute angle equal to

A the ratio of the side opposite Z A to the hypotenuse has the

same value X; X depends only on Z ^, and not at all on the par-

ticular triangle in which this angle may be found. For example, if

45°, X
V2'

A = 60°, X = W3.

Hence we see that X is a function of A, and that to every value

of A corresponds a definite value of X.

This function is called the sine of angle A, or

X = sine of angle A = sin A.
94
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124. The ratio of the side opposite the angle to the hypotenuse

is merely one of six possible ratios which may be formed from the

three sides of any right triangle. Hence associated with every

acute angle there are six ratios, or six abstract numbers, whose

values depend merely on the magnitude of the angle. They are

called the six trigonometric ratios, or trigonometric functions of

the angle, and are named as follows:

opposite side

hypotenuse

adjacent side

hjrpotenuse

opposite side
tangent of Z .1 = tan.l =

^^jIZi^^Hidi
*

hypotenuse

opposite side

hypotenuse

adjacent side

adjacent side

sine of Z ^ = sin A

cosine of Z A = cos A

cosecant of Z ^ = esc A

secant of Z ^1 = sec A

cotangent of Z A = cot A
opposite side

If the sides of the triangle are a, b, c, as in the figure, then

sm A = —f CSC A = —

>

cos^l

tan^

sec^ =

cot^ =

125. Exercises. With the aid of a pro-

tractor (see inside of back cover), construct

triangles containing the following angles and,

by measuring the sides and dividing, calculate to two decimals

the six functions of these angles.

1.
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Angle.
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Lay off AC = 1. With A as center and radius = 3, strike

an arc to cut the -L drawn to AC at C. This determines

the point B.

The solution may now be completed as in example 1.

Another method of constructing the triangle in this

example is to calculate CB first, and then to proceed as

in example 1.

127. Exercises. Determine the angle (approxi-

mately) and the remaining functions, when

1.
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The preceding equations are now all contained in the following

Rule : Any function of an acute angle is equal to the co-function

of the complementary angle.

Exercise. Verify this rule when A = 30°, 45°, and 60°.

129. Application of the Trigonometric Functions to the Solution

of Right Triangles. — When two parts of a right triangle are

known, exclusive of the right angle, the triangle may be constructed

and the remaining parts determined graphically. By the aid of

tables of the trigonometric functions, the unknown parts may also

be calculated.

Rule : When two parts of a right triangle are given (the rt. Z
excepted) and a third part is required, write down that equation

of (124) which involves the two given parts and the required part.

Substitute in it the values of the given parts, and solve for the

required part.

An exceptional case arises when two sides are given and the third

side is required. In this case we may use the formula a^ -\- b^ = c^.

It will usually be better however, unless the given sides are repre-

sented by small numbers, to solve for one of the angles first, and

then to obtain the third side from this angle and one of the given

sides.

Example 1. In A ABC, given A = 40°, C = 90°, and b = 60°. Find the

other parts of the triangle.

To get B, we have B = 90° - A = 50°.

To get a, take t = tan A or a = b tan A.

Finally, c is determined from - = cos A

b
^. Aor c = r — osecA.

cos A
From the table of (125), tan 40° = 0.839 and

A eo c sec 40° = 1.305.

Hence a = 60 X 0.839 = 50.340 and c = 60 X 1.305 = 78.300.

As a check, we should have

a ^ 50.340 „„.„
^
= cos5 or

78:300
= 0-643.

130. Exercises.

Determine the unknown parts of right triangle ABC, C being 90°, from

the parts given below. Check results by graphic solution and by a check

formula containing the unknown parts. (Use the table of (125).)
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1. A= 25°, a = 100.
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An angle is positive when the generating hne rotates counter-

clockwise (in the direction of the curved arrow in the figure)

negative when the generating line moves clockwise.

The quadrant of an angle is that quadrant in which its terminal

line lies. The angle is said to lie in this quadrant.

The initial line OX, and any terminal line, as OPo, may always

be considered to form two angles numerically < 360°, as +120°

and —240° in the figure.

When the moving line rotates from OX through more than one

complete revolution, an angle greater than 360° is generated.

Thus a rotation in the positive direction (positive rotation) through

H revolutions generates an angle of 480°, lying in the second

quadrant; a negative rotation through 2^ revolutions generates

an angle of —780°, lying in the fourth quadrant.

132. The Trigonometric Func-

tions of any Angle.—Let XOP be

any angle, and P any point in its

terminal line. (The four possible

cases are here shown in the figure,

according to the quadrant of the

angle.) Let OM be the abscissa

of P, MP (not PM) the ordinate

of P, and OP the distance of P.

The signs of these quantities are

taken according to the usual

convention and are shown in

the figure. We now define the

functions of angle XOP, in



133,134] TRIGONOMETRIC FUNCTIONS 101

According to the above definitions we have the following

Table of Signs of the Trigonometric ''unctions

Quadr.
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at S and *S'. Let XOP be an angle in the first quadrant. Pro-

duce OP to meet t^e tangent at S in T. Then by similar triangles,

MP ST

Ts



135] TRIGONOMETRIC FUNCTIONS 103

By examining the other angles in the figure we see that, (a) the

cotangent of any angle is numerically equal to the length of the

segment of the horizontal tan-

gent cut off by the terminal

line of the angle produced;

(b) the cosecant is numerically

equal to the segment of the

terminal line produced from

the origin to the horizontal

tangent.

In either case the sign is to

be determined according to

the quadrant of the angle.

N 135. Variation of the Trigo-

nometric Functions. — In the figure of (133) suppose the point

P to describe the circumference of the circle in such a way that

the angle XOP shall vary continuously from 0° to 360°. Let us

trace the changes in the value of sin XOP = MP.
.
In the first

quadrant MP, and hence sin XOP, varies from to +1, in the

second from -|-1 to 0, in the third from to - 1 and in the

fourth from — 1 to 0.

Similarly cos A'OP varies in the four quadrants successively

from +1 to 0, to -1, -1 to 0, and Oto +1.

Consider next tan XOP=^' When XOP = 0°, MP = and

CM = 1 ; hence tan 0° = 0.

Now as XOP increases from 0° toward 90°, MP steadily increases

toward 1, while OM steadily diminishes toward 0. Hence tan

XOP increases from without limit, so that we write tan 90°= co,

and say that the tangent varies from to ^ as XOP varies from

0° to 90°.

Since the three remaining functions are reciprocals of the three

already considered, their variations are easily traced. Thus,

CSC XOP Hence esc XOP varies from « to 1 in the
sin XOP

first quadrant, and from 1 to <» in the second. Now as XOP
passes through 180°, esc XOP changes suddenly from a large posi-

tive value when the angle is a little less than 180° to a large

negative value when the angle is a little more than 180°.
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This abrupt ci^iange in the cosecant when the angle passes

through 180° is ex) pressed by saying that the cosecant has a dis-

continuity at 180°; 5'^ec 180° may be either +oc or -oo, according

to the side from which XOP approaches 180°.

In the third quadrant esc XOP is negative and varies from

— 00 to —1; in the fourth quadrant from —1 to — oo. There is

another discontinuity at 360° or 0°,

The variations of the six functions are shown in the following

table. , .

Quadr.
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Graphs of the Trigonometric Functions

Sine Curve *i

(full line)

Cosine Curve o

(broken line)

Tangent Curve -^i

(full line)

Cotangent o

Curve
(broken line)

Secant Curve h
(full line)

Cosecant Curve o

(broken line)

I

4^0" [S^O"
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6. Trace the graph of ?/ = cos x. (On same diagram as ?/ = sin x.)

7. Trace the graphs of y = tan x and y = cot x.

8. Trace the graphs of y = sec x and 7/ = esc x.

'^ISG. Periodicity of the Trigonometric Functions. — Since the

position of the terminal Hne of an angle x is unchanged when the

angle is increased or diminished by integral multiples of 360°, any

function of x equals the same function of x ± 7i.dQ0°, n being an

integer. That is,

fix) =/(x±n.360°),

where / stands for any one of the trigonometric functions.

Hence the trigonometric functions are periodic, with a period

of 360°. (See graphs on p. 105.)

137. Relations between the Functions of an Angle.— From the

general definitions of the functions given in (133) we have, putting

Z XOP = X,

1 1^1
sin -JO = ; cos x ^ ; tan oc = ——-

.

CSC X sec ic cot X

ordinate

ordinate distance sin .r
. ^ cos x

tan X = —j—

;

= —r—r—
- = , cot x = -: •

abscissa abscissa cosic sin a?

distance

Whatever be the quadrant of angle XOP = x [figure of (132)],

we have

(ordinate)^ + (abscissa)'^ == (distance)'.

Dividing this equation through in turr^ by (distance)-, (abscissa)-,

and (ordinate)-, and expressing the resulting ratios as functions

we have

sin^ic+ cos^cc = 1,

1 + tan' X = sec' x,

1 + COt^ X — CSC' X.

All the above relations between the functions of an angle x are

true for all values of x. They form a first set of working formulas,

and should be thorouglily committed to memory. They are

collected below, as
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Formulas, Group A.

,,^ . 1 ... . since (6) sin-x + cos-iT = 1.
(l)sinx = (4)tanx = ^

CSC a; cos J) /7N . ,
* ••

(7) 1 + tan-.r = sec'iT.

/ox 1 /r\ X COS.r
(2) COSX = (5) cot .*• = -: /o\ i _L ^^4-'i -^^^-J

secx ^ sinx (8) 1 + cot'x = csc-u^.

(3) tan.r= —^

—

cotoj

We shall apply these formulas in two examples.

Example 1. Prove that tan x + cot x = sec x esc x.

sin X . cos a; sin2 x + cos^ x
tan X + cot X =

1

—

-.— = —-.
—

cos X sm X sm x cos x

sm X cos X

Example 2. Prove that

esc X
;r j r- = cos X.
tan X + cot X

CSC X sec X.

tan X + cot X sin .c
,
cos x sin2 x + cos^ x

cos X sm X sm x cos x

sm X cos X

CSC X sm X cos x = cos x.

In both examples all the steps taken are true for all values of x, since

this is true of all the formulas of group A. Hence the given equations are

true for all values of x, and they are therefore called trigonometric idcntilies.

The equation sin^ x — cos^ x = 1 is not true for all values of x, but holds

only for certain special values; it is not an identity.

138. Exercises. Prove the following identities:

1. tan X cos x = sin x. . , esc x
4. cot X =

J
sec X

2. -— = sin X. e / •
1

•> NO I
cot X sec X 5. (sm^ X + cos- .r)- = 1.

« . sec X _ cos 9 , „ -

3. tanx = 6. -^—rr—^ = cot2».
esc X sm 6 tan

7. (esc e — cot e) (esc + cot ») = 1.

8. (sec X — tan x) (sec x + tan x) = 1.

9. (sin 9 -f cos 5)2 = 1 + 2 sin d cos 0.

10. sin2 a + cos2 a = sec2 a — tan2 a.

11. (sina — cosa)2 = 1 — 2sinQ:cosa.
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12. sin4 X — cos4 x = sin2 x — cos2 x.

13. (1 - sin2 x) csc2 x = cot2 x.

..-'^4. C0t2 e - C0S2 e = C0t2 C0S2 6.

15. tan + cot = sec d esc 9.

16. tan ^ sin ^ + cos </> = sec 9!>.

17. sin2 sec2^ = sec2 <j) - \. 20. (1 - sin2 /3) (1 + tan2 /3) = 1.

18.
^^^''^ = i±.C08^^ 21. tan" x - sec" x = 1 - 2 sec2 x.

' 1 — cos ^ sin <yi

1 ,x o^ -o^ _„ cosx + sinx 1+tanx
.- l+tan2/3 sm2/3 22. —

-.— = -—!—
19. T—

;

-r-^ = —r-^ • COS X — sin X 1 — tan x
l+C0t2;S COs2/3

23. (tan x — 1) (cot x — 1) = 2 — sec x csc x.

24.
COS(

25. sec sin' 5 = (1 +cos^) (tan 5 — sine).

26. tan2 a + cot2 a + 2 = sec2 a cs(fl a.

27. sin3 e + cos3 6 = (sin + cos 0) (1 — sin ^ cos 0).

28. (sin2 e - c'os2 (9)2 = 1 - 4 cos2 ^ + 4 cos* (?.

29. sin6 e + cos^ e = sin* + cos* e — sin2 ^ cos2 e.

30. (sin X — cos x) (sec x — csc x) = sec x csc x — 2.

„^ tan X — cot X _ 2 _
tanj; + cotx csc2x

32. (a cos X - 6 sin x)2 + (a sin x + h cos 0)2 = a2 + }fi.

33. cos2
<i6

4- (sin cos 0)2 + (sin sin 0)2 = 1.

34. tan a + tan /S = tan a tan /3 (cot a + cot /3).

139. Functions of any Angle in Terms of Functions of an Acute

Angle.— It is possible to express in a simple manner any function

of any angle in terms of a function of an acute angle. Therefore

a table of values of the functions of angles from 0° to 90° will serve

for all angles. In fact, in view of (128), a table of functions from
0° to 45° would be sufficient, though not convenient.

1. Any angle, positive or negative, can be brought into the first

quadrant by adding to it, or subtracting from it, an integral mul-

tiple of 90°.

Thus: .
760° - 8 X 90° = 40°; - 470° + 6 X 90° = 70°.

2. When an angle is changed by an integral multiple of 90°,

say n X 90°, the new terminal line lies in the same line as the origi-

nal terminal line when n is even; at right angles to it when n is odd.

3. Twoangles which differ by an eyenrnw^^ipZeo/ 90° will be called

symmetrical with respect to the initial line, or simply symmetrical;

two angles which differ by an odd multiple of 90°, skew-symmetrical.
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4. When two angles are symmetrical, any function of the one is

numerically equal to the same function of the other.

From figure (a), sin x = - sin x' = sin x", etc., for the other
functions.

\ngles x' and x" are symmetrical with

respect to angle x

Angles x' and x" are skcu'-sym metrical

with respect to x

When two angles are skew-symmetrical, any function of the one
is numerically equal to the co-function of the other.

From figure (b), sina;'= - cos a:' = cos a;", etc., for the other

functions.

Exercise 1. From figures (a) and (b), write down all the functions of x
in terms of functions of x' and of x".

Exercise, 2. Draw figures corresponding to figures (a) and (6), when x lies

in each of the other quadrants. Then proceed as in exercise 1.

5. Rule: Any function of any angle x is numerically equal to

^, { same function . . . ,-..,,, {even
the { / ,. of X increased or diminished by any < , , mul-

( co-function t> u
^ ^^^

tiple of 90°.

As an equation,

^ ± f(x ± n-90°), neven;

) ± co-f(x ± »^.90°), nodd.

The sign of the result must be determined by noting the quadrants

of X and x ± n ' 90°.
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When the new angle, a; ± n • 90°, lies in the first quadrant, give to

the result the sign of the given function of x, f (x).

Examples.

1. sin 680° = sin (50° + 7 X 90°) = - cos 50°.

Here we diminish the given angle by an odd multiple of 90°, hence change

to the co-function. Also sin 680° is negative, hence we use the minus sign.

2. tan (- 870°) = tan (30° - 10 X 90°) = + tan 30°.

3. sec 420° = sec (60° + 4 X 90°) = + sec 60°.

140. Relations between the Functions of +x and —x.— The

figure shows two cases, x in the first quadrant and x in the second

quadrant. In either case,

sin a; = — sin {— x);

esc a; = — CSC (— x);

cos a; = cos ( — a;)

;

sec X = sec {— x);

tan X = — tan (— x);

cot a; = — cot (— a;).

Exercise. Show that these equations

are true when x lies in the third quadrant

or fourth quadrant.

Rule: The cosine or secant of any angle is equal to the cosine

or secant respectively of the negative angle; the remaining four func-

tions of the angle are equal to the negative of the correspondingfunctions

of the negative angle. Or,

f{x) = /(— x) when f stands for cos. or sec.

f {pc>) = — / ( — ic) when f stands for sin., esc. tan., or cot.

-^ 141. Exercises. Express all the functions of the following

angles in terms of functions of acute angles:

1. 130°. 5. 359°. 9. - 321°. 13. - 1060°.

2. 165°. 6. - 25°. 10. 742°. 14. - 401°.

3. 230°. 7. - 12.5°. 11. - 665°. 15. 525°.

4. 340°. 8. - 250°. 12. 1100°. 16. - 101°.

Express all the functions of the following angles in terms of functions of

angles between 0° and 45°.

17. 75°. 19. 110°. 21. -335°. 23. 790°.

18. - 80°. 20. 255°. 22. 600^ 24. - 510°.
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the values
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Hence,

T radians = 180

radians = 90°;

radians = 45°; and so on.

In dealing with angles measured

in radians it is customary to omit

specifying the unit used; it is under-

stood that when no unit is indicated

the radian is implied. Thus, 2t = 360°, w = 180°,

- = 60°, 2| = 2| radians, and so on.
o

Note. To get the true form of the graphs of the equations y = sinx,

y = cosx, etc., take x in radians on thex-axis, thus: x = 0.1, 0.2, 0.3, . . . , 1,

. . . and find the corresponding values of y; use the same unit of length for

both X and y. See graphs on p. 105.

144. Radians into degrees, and conversely.

Since 2 t (radians) = 360°,

360° 180° _ 180°

2x ~ IT "3.1416-

also, 1 degree =^ (radians) = -— (radians)

therefore, 1 radian 57°.29+;

(radians) = .017+ (radians).
57.29+

Rule: To convert radians into degrees, multiply the number of

radians by
180

or 57.29+ .

To convert degrees into radians, multiply the number of

or .017+ .

' 180 ^^57.29-

By taking a sufficiently accurate value of tt, we find,

1 radian = 57°.2957795 = 3437'.74677 = 206264".8.

1° = .0174533 radians.

1' = .0002909 radians (point, 3 ciphers, 3, approx.).

1"= .0000048 radians (point, 5 ciphers, 5, approx.).
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The measure of an angle in radians is often called the circular

measure of the angle. y
145." Exercises. Reduce to degrees, minutes and seconds the

angles whose circular measures are:

^ IT Sir 5ir 5ir 7 ir

8' T' T' T' T'
1 1 7

2. 1 2i, -' 2 3 4

11 ^1 ^^1 2 7r+3
1.^ - + 1, 2 + 3' -6—

6 TT IT — 6

ir2 TT + 1

7r2 + ll-7r7r-l
Reduce the following angles to circular measure:

6. 30°, 120°, 150°, 225°, -60°.

7. 375°, - 22i°, 187°.5, 106°, 93° 45'.

8. 85°, 191° 15', 5° 37' 30", 90° 37' 30".

9. 10', 10", 0".l, 12° 5' 4", 21° 36' 8".l.

10. If the radius of the earth be taken as 3960 miles, find the number of l^

feet in an arc of 1" of the meridian.

11. How many radians in a central angle subtended by an arc 75 ft.

long, the radius of the circle being 50 ft.?

12. How many radians in the central angle subtended by the side of a

regular inscribed decagon?

13. A wheel makes 1000 revolutions a minute. Find its angular velocity

in radians per second.

14. If the angular velocity of a wheel is 10 tt radians per second, how many
revolutions per minute does it make?

146. Angles Coiresponding to a Given Function.—Let n denote

an integer positive or negative, or zero; then 2 n is always even,

and 2 n + 1 odd; hence the angle

2 7nr has the terminal line OX
(figure) coincident with the initial

line, and angle (2 ?i + 1) tt has the x' cn-^-mr

terminal line OX'.

Suppose now we wish to write

down all angles x such that

sin a; = |. Corresponding to a given function, there are always

(except when the angle is a multiple of 90°) two angles less than

360°; in this case they are

30° and tt - 30°.
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All angles with the same terminal line as either one of these will

have the same functions; all such angles are

2 riT + 30° and 2 nx + (tt - 30°)

= (2 n + 1) TT - 30°.

Hence all solutions of the equation
"* sm a; = ^ are given by

a; = 2 nvr + 30° or (2 n + 1> tt - 30°

In general, if d denote the smallest positive angle whose sine

is a, then all solutions of the equation

(1) sin a; = a are x = 2 tit -h and (2 n + 1) tt — ^.

Hence also, if denote the smallest positive angle whose

cosecant is a, the solutions of the equation

(2) CSC x = a are x = 2 tit -\- 6 and (2 n + 1) tt — ^.

Consider next the equation

COS X = h.

The two simplest solutions are

a: =+60° and a; =-60°.

All possible solutions are given by

X = 2 WTT + 60° and x = 2 nir - 60°,

or X = 27nr ± 60°.

In general, if 6 be the smallest positive

angle whose cosine is a, all solutions of the

equation

(3) cos a; = a are x = 2 mr ± 0.

Hence also, if be the smallest angle whose secant is a, all

solutions of the equation

(4) sec X = a are x = 2 ht ± 6.

Finally consider the equation

tan a; = 1.

The two simplest solutions are

X = 45° and a; = tt + 45°,
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and all possible solutions are

x = 2mr-\-45° and z = 2 rnr + (tt + 45°),

the second set being the same as a: = (2 n + 1) w + 45°.

Both sets are contained in the single

equation

X = TIT -{- 45°,

the first set being obtained when n is

even, the second set when n is odd.

In general, if 6 be the smallest posi-

tive angle whose tangent is a, all

solutions of the equation

(5) tan X = a are x = mr -{ 0.

Hence also, if be the smallest positive angle whose cotangent

is a, all solutions of the equation

(6) cot X = a , are x = nr -'r 0.

Summary of equations (1) to (6).

Let denote the smallest positive angle having a given function

equal to a given number a.

11.

III.

^ sin X = a

I
CSC Jc = a

( cos a? = a

I
sec X ^ a

( tan X = a

) cot J^ = a

Then all solutions of the equation

are £c = 2 jtir + 6 and (3n. + l)TT — 6;

are x = 2 uir ± 6

;

are x. = »</t7 + 0.

The angle is usually called the principal value of x.

The solutions of these equations may also be written by the

following simple rule.

Rule: Corresponding to a given value of a function, there are

in general two and only two positive angles less than 360°. If

these be denoted by xi and X2, then all possible angles are given

by xi ± 2 nir and x-z ±2 nw.

In exceptional cases there may be only one angle < 360°, as

when sin a: = 1 or cos x = —1.

147. Use of Tables of Natural Functions. — Usually the angles

corresponding to a given value of a function are not known

exactly. The angles may then be found approximately by the
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aid of tables of the natural functions, such as are given in (125)

and in Appendix, Table III.

These tables give the functions of angles from 0° to 90°. But

they will serve for all four quadrants, sirjce any function of any

angle is reducible to a function of an acute angle.

When the given value of the function is not found exactly in the

table, the corresponding angle must be obtained by interpolation.

1
Example 1. Given sin x To find

The two values, xi and Xi, < 360°, are shown in the figure. They are

easily found when xs, the angle whose sine is +

xi = TT + 2:3 and X2 = 2ir

Since sin 0:3= = = .333, we find by interpolation from Table III, X3 =

19° 28'. Hence, xi = 199° 28', X2 = 340° 32'.

All possible values of x are then given by

199° 28' ± 2mr, 340° 32' ± 2mr.

2
Exam-pie 2. Given cot - x = 3.362. To find x.

From Table III, ^ x = 16° 34' or 196° 34' ( = 180° + 16° 34').
3 2

Hence all possible values of ^ x are given by

I
X = 16° 34' ± 2 riTT or 196° 34' ± 2 nir.

Therefore, x = 24° 51' ± 3 n^r or 294° 51' ± 3 mtt.

We might also write, from III of (146),

I X = 16° 34' + wtt; hence x = 24° 51' + \ nw.

148. Exercises. Find all values of the angles which satisfy

the following equations:

1. cot X = 1 ; sin X = — §; sec x = 2; cos x = 1.

2. esc X = -V2; tanx = VS; cosx = .5; cotx = —s/S.

3. sin X = —5; secx = — 3; tanx = 2; cscx = 5.

4. cosx = -.257; cotx = -.998; sinx = .020.

5. tan» = 2.500; csc0 = -3.505; sec = -10.

6. vers^ = 1.450; vers^ = .605; covers (/> = .750.
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149. Given one function of an angle, to find the other functions.

Fiiui theExample 1. sinx

other functions. '

Take ordinate = 1 and distance = 2;

then abscissa = db V3 (figure).

Then

Wo
cos X = ± jL2. , tan x = ±

2

cotx = ±V3,

2
sec X = ± —7Z. , CSC X = 2.

V3

V3

We have found two values for each function except csc x, which is the

reciprocal of the given function. Similar results will be found in general.

Exam-pie 2.

tan X = -3 +3>
+4 ^---^y

The two possible positions of the ter-

X minal line are shown in the figure.

Hence, sin x = ± -> cosx = ± ~>

4 ,5 5
cot X = —

ij > csc X = ± - > sec X = ± -7 •

Example 3.

Then (figure),

±2
+3 -^)

Vl3

VT3

V3

Vl3

Example 4. sinx= -

Ordinate = h; distance = k;

hence abscissa = ± v A;^ — K^.
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Then cos a; = ± -^^
, tan x = ± —r- , etc.

k \lk'i - h^

Exercise 1. Construct figures for the cases when , is (a) plus; (b) minus.

Exercise 2. Is the problem possible for all values of h and A;?

Example 5. tan x = fl -6 /_ - (fl -b) \

2 \/ab [ - 2 \/ab )

Here ordinate = a — b, abscissa = 2 V"'?!

or, ordinate = — (a — 6), abscissa = — 2 Va6.

In either case, distance = + y{a — 6)'' + 4 a6 =
|
a + 6 1

.

TT •
,

fl - ft ,2 -s/ab
Hence, smx = i , r~r,' cos x = ± , 1-^-,' etc.

|a + 6| \a + b\

Exercise 1. Calculate the values of the six functions when a = 2, b =3;
when a= — 2, 6= — 3; when a = 1, 6 = 4; a = — 1, 6 = — 4.

Exercise 2. Is the problem possible for all values of a and 6?

150. Exercises. Find the other functions, given that

1. sin X = — 5. 6. CSC X = — T L *^ « ^
^ ^'

11. CSC^ =
2. cosx = i 7. secx =- |J-.

12. tan 9 = a.

3. tanx = ^. 8. cotx=-.75. ., ., ,
*

13. sm 9 = fl.

4. secx = 4. 9. sinx = .6. 14. cot0 = V^.

5. cotx = V3. ^^ b ^^ , a2 4-;^2
10. cos = - • 15. sec (/>

=
2ab

16. State for what values of the literal quantities in exercises 10-15, the

given equations are impossible.

151. To express all the functions in terms of one of them.

1. Express all the functions in terms of the cosine.

We have

_ cosx _ abscissa

I distance

Hence let abscissa = cos x and distance = 1.

Then ordinate = ± Vdist.^ — absc- = ± Vl — cos^ x.
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The figure shows this graphically when cos x is positive.

Taking into account both values of tlie ordinate, we have

sina;= ± Vl-cos-a:;

Vi — cos^ X
tan X = ±

cot .T = ±

CSC X = ±

COS a:

COS a:

V 1 — cos- X
'

1

V 1 — COS^ X

sec a;

1

cos X

Exercise 1. Obtain these equations for the case when cos x is negative.

Exercise 2. Obtain the same equations directly from the formulas of

Group A.

2. Express all the functions in terms of the cotangent.

cot X abcsissa
cot a; =

cot a;

- 1 ordinate

Hence let abscissa = cot x and ord.nate = 1
;

or let abscissa = — cot x and ordinate = — 1.

In either case, distance = + Vl -|- cot^ x. (See figure, where we

assume cot a; > 0.)

Hence sin a; = ±
vl +cot2a;

cos X = ±
cot a;

Vl + cot- X
etc.
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By taking each of the functions in turn, and proceeding as

above, we obtain the results shown in the fo lowing table. The
given function and its reciprocal are uniquely determined; the

other four functions are ambiguous in sign.



CHAPTER VIII

Functions of Several Angles

152. Formulas for sin {oc + y) and cos (x + 2/).— Let x and y

be two angles, each of which we first assume to be less than 90°.

Their sum will then fall in the first or the second quadrant. The

two cases are illustrated in the figures, and the demonstration

which follows applies to either figure.

Construct Z XOP = x and Z POQ = y, the terminal side of

X being taken as the initial side of y.

M X

From Q, any point on the terminal side of y, draw perpendicu-

lars NQ and PQ to the sides of angle x, produced if necessary.

Draw MP _L OX and KP _L NQ.

Then Z KQP = x, and in either figure.

sin (x + y)
NQ MP + KQ
OQ OQ

MP KQ
OQ '^ OQ

Hence

(a)

MP. OP. KQ PQ
OP ' OQ.^ PQ^' OQ^

sin (ac -\- y) = sin oc cos y + cos x sin y.

121
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Also, noting that ON in the second figure is a negative line,

, ,

. ON OM-NM OM KP
cosix + y) = ^= QQ =-OQ-OQ

^OM OP__KP PQ
OP'OQ PQ'OQ'

Hence

(b) cos (.-r + y) = cos x cos y — sin x sin ij.

153. In the above proofs we have assumed x and y less than

90°. Similar proofs may be given for any other values of x and y.

We shall however use formulas (a) and (b) to verify the truth

of the formulas

(a') sin (A + 5) = sin A cos B + cos A sin R,

(W) cos (A -\- B) = cos A cos B — sin A sin B,

for all values of A and B.

A and B will differ from acute angles by certain integral multi-

ples of 90°, say,

A = X + w . 90°; B = y-^m- 90°.

All possible quadrants for A and B (except the first, for which the

formulas have been derived) will be included by considering only

the values 1, 2, 3 for w and m.

In particular, let n = 1 and w = 2. Then

A=x-^ 90°; B = y+ 180°; A^B = x-\-y-^ 270°.

Hence, if formulas (a') and (b') are true,

' sm{x + y-\- 270°) = sin (x + 90°) cos (y + 180°)

+ cos (x + 90°) sin (y + 180°),

cos (x-\-y-\- 270°) = cos (x + 90°) cos (y + 180°)

- sin (x + 90°) sin (y + 180°).

Removing the multiples of 90° by the rule of (139) and changing

signs, these equations reduce to

cos (x + y) = cos X cosy — sin x sin y,

sin (x + ?/) = sin x cosy -\- cos x sin y.
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But these are true since x and y are acute angles; hence also (a')

and (b') are true. In exactly the same way the truth of these

equations may be shown for any integral values of 7i and m,

positive or negative.

Using the letters x and y in place of A and B, formulas (a) and

(b) are true for all values of x and y.

154. Replacing y by —y in (a) and (b), and noting that

sin (—?/) = — sin y and cos {— y)= cos y, we have

(c) sin (.K — y) = sin a? cos y — cos « sin y;

(d) cos {x. — y)= cos oc cos y + sin oc sin y.

Equations (a), (b), (c), (d) are usually called the addition and

subtraction formulas of trigonometry. All the other working

formulas are deduced from them. -

155. Dividing (a) by (b), we have

, , , sin (x + v) sin x cos y -f cos x sin y
tan {x -{-])) = 7—,-^ = ^

-. ^^ •

cos {x + y) cos X cos y — smx sm y

sin X cos 7/ cos x sin y
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2. If cos a; = I and cos y = |?, calculate cos (x + y).

3. If sin a = 3 and sin /3 = |, calculate cos (a — /3).

Show that,

4. cos (60° +x) + cos (60° - x) = cos x.

5. sin (45° + 0) - sin (45° - 6) = \f2 sin 5.

. « , . A cos (g - (f>)

6. cot e + tan = -^^

—

„ ^^ ,
•

sin cos 9
7. cos (A + 45°) + sin (A - 45°) = 0.

8. sin nd cos + cos nd sin = sin;(n + 1) 9.

9. tan^e-^) + cot(0+^) =0.

10. From the functions of 30° and 45° calculate the functions of 75°.

For convenience we collect formulas (a), (b) . . .
,
(h) and form

Group B, numbering them consecutively with the formulas of

Group A.

Formulas, Group B.

(9) sin (« + ?/)= sin xcosij + cos oc sin p.

(10) cos {x + 2/) = cos oc cos 2/ — sin ao sin y.

(11) sin (« — 2/) = sin ic cos ?/ — cos ic sin 2/.

(12) cos (x — 2/) = cos X cos 2/ + sin oc sin y.

, , s tan iT + tan 2/

(13) tan(x + ,v)= ^_^^^^^^,y
, cot a? cot 2/ — 1

(14) cot(x + 2/)= eotx + cot2/*

tan £r — tan y
(15) tan(a.-2/)=^^tanxtan2.*

. cot X cot 2/ + 1

(16) cot(x-2/)= ,ot^_eota.'

156. Functions of 2 a?.— Putting ?/ = a; in (9), (10), and (13) of

Group B, we have

(14) sin 3 ic = 2 sin a? cos cc,

(15) cos 3 a? = cos'* X — sin^aj,

= 1 — 2 sin^ oc,

= 2 cos^ a? — 1.

2 tana?
(W) tan 2 a? = :—5— *

^^^^ 1 - tan* X

For cot 2 a: use -—^ •

tan2x
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Exercises.

1. Verify these formulas when x is 30°; 45°; 150°; -60°.

Show that,

2. 2 CSC 2 X = sec x esc x.

1 - tan2 X
3. cos 2 X

1 + tan2 X.

sin 2 X = tan X.
1 + cos 2 X

6. tan X + cot X = 2 esc 2 x.

6. Calculate the functions of 2 x when sin x = 1|.

Ans. sin 2x = ±||§; cos2x = ^J^ ; etc.

7. Calculate the functions of 2 x when tan x = \.

157. Functions of | x.— The second and third values of cos 2 x

in (15) are

cos 2 a; = 1 — 2 sin^ x,

cos 2 a; = 2cos2x — 1.

cos 2;

Solving these for sin x and cos x respectively, we have

,
/I — cos 2 X

,
. /l

sin a: = ± y s » cos a: = ± y -

Replacing a; by i x, these become

(17) sin|x= ±y ,

(18) cos|x=±y ^

Dividing (17) by (18),

,^f.. . .
, . /l — cos X 1— coscc

(19) tan
J
a? = ± y -

+ cos X sin a? 1 + cos x

Formulas, Group C.

(14) sin 3 a; = 2 sin a? cos a?. (17) sin|a7 = ±y — cos X

/I ox 1 , t A + cos X
(18) cos |x = ±y

(15) cos 2 a? = cos' a? — sin' a?
'^

= 1 — 3 sin' as /im * i ,./l — cosx
(19) tan^a? = ±Vrn= 2cos'x-l. Vi + cosx

_ 1 — cos X
sin X

,. ^. , „ 3 tan X. sin x
(16)tan2x = - —J-. = —

1 — tan' X 1 + cos X
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Exercises.

1. Calculate the functions of 15° from those of 30°.

2. Calculate the functions of 22|° from those of 45°.

3. Calculate the functions of 75°.

4. Calculate the values of tan (2 x - y), when sin x = I and cos y = \i.

Show that,

5. sin 4 a; = 2 sin 2 a: cos 2 x. ^^ 1 + sec 9 ^ ^ cos2 \ 6.

sec
2 - sec2 X

6. cos 2 X = ^^^2 X
' 13. sin/3cot J|3 = 1 +cos^.

2 X 1 — tan X

1 + sin 2 X . 1 + tan x

cos" 9 - sin" 61 = cos 2 6. 15. cot /3

cos3 e - sin3 d 2 + sin 2

14. 1 + tan /3 tan 5 /3 = sec
/

2 cot?

COS — sin 2 fl

1 + tan
^

10. cot X + CSC X = cot I X. 16. ,

^"^^ = i.
1 - sm /3 1 _ tan ^

11. (sin 1 + cos § 0)2 = 1 + sin 0. 2

158. Formulas for sin « ± sin r and for cos u ± cos f .
— For-

mulas (9) and (11) of Group B are

sin (x + y) = sin xcosy -\- cos x sin y,

sin {x — y) = sin a:; cos ?/ — cos a; sin y.

Adding: sin (x + y) + sin (x - ?/) = 2 sin x cos 2/.

Subtracting: sin (x -\- y) - sin (.r - ?/) = 2 cos x sin ?/.

Let X -\- y = u, and x - ?/ = y ;

?^ + y
,

u — V

then a: =—^ and ?/ = ^

Substituting in the two preceding equations, we liave

. if + r n — r

(20) sin u + sin *' = 3 sin—-— cos —-—
u + r . 11 — r

(21) sin n - sm v = 2 cos ^ sin
^

•
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Proceeding similarly with formulas (10) and (12) of Group B,

we obtain,

(22) cos u + cos f = 2 cos——- cos
3

(23) cos n — cos v = — 3 sm —7;— cm—

The last four cciuations, called the addition theorems of trigo-

nometry, we collect as the

Formulas, Group D.

(20) sm u + sm v = 3 sm—:;— cos —^— •

(21) sm a — sm *' == 3 cos —-— sm

—

-—
*/ + V 11 — V

(22) cos u + cos V = 2 cos—-— cos—-— •

(23) cos u — cos V = — 2 sm —-— sm—-— •

Example 1. Show that
^!"^+^!°^ = ^-

^ smx — smy X — ytan-^—

_ . X + y X — y
2 sin —i^ cos

sin X + sin 7/ 2 2

sin X — sin w _ x -\- y . x —
2 cos

' sm —?r-

. tan -^
, X + y .X — y 2= tan—^ cot _ =

2 2 ,_ .r-^

r. 7 r. C1L XI. i.
cos 75 + cos 15°

/^Example 2. Show that ^^o"^ 1^6 = - V3.
cos 75 — cos 15

cos 75° + cos 15° 2 cos 45° cos 30° *,-o .or>o y^
.^Fs-^ r?5 =—.-, .go or^o = - cot 4o cot 30 = - v3.

cos 75 — cos 15 — 2 sm 45 sm 30
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Exercises. Show that:

1. sin 3 a; + sin 5 a; = 2 sin 4 x cos x.

2. sin 10 + sin 6 5 = 2 sin 8 e cos 2 9.

3. cos 2 x + cos 4 X = 2 cos 3 X cos x.

4. sin 7 a — sin 5 a = 2 cos 6 a sin a.

5. cos 4 e — cos 6 e = 2 sin 5 d sin 6.

3 X X
6. cos x + cos 2 X = 2 cos— cos ^

•

7. sin 30° + sin 60° = V2 cos 15°.

8. sin 70° - sin 10° = cos 40°.

9. sin 5 X cos 3 X = ^ (sin 8 x + sin 2 x).

10. 2 cos 10° sin 50° = sin 60° + sin 40°.

. ^ sin A + sin B , A + B
cos A + cosB 2

^_ sin9 + sin30 , „.
12. —

1

5-;: = tan 2 d.
cos + cos 3

13. 2 cos a cos /3 = cos {a — 13) + cos {a + p).

14. sin 4 sin e = I (cos 3 — cos 5 0).

15. cos 8 X — cos 4 X = — 4 sin 2 x sin 3 x cos 3 x.

16. sin (2 X + 3 2/) + sin (2 X - 3 y) = 2 sin 2 X cos 3 y.

159. Exercises involving the use of formulas (1) to (23).

1. If sin X = t and sin y = |, find the value of sin (x + y) and cos (x + y)

when X and y are both in the first quadrant.

2. As in exercise 1, when x and y are both in the second quadrant.

3. If cos X = I and cos y = |?, calculate sin (x + y) and cos (x + y) when

X and y are both in the first quadrant.

4. As in exercise 3, when x and y are both in the fourth quadrant.

6. If sin X = i and sin 2/ = f , calculate all values of sin (x± y).

6. If sin a = i and sin /3 = §, calculate all values of cos (a ± 0).

7. If cos a = f and cos /3 = |, calculate all values of tan (a ± /3).

8. Calculate sin {x + y + z) when sin x = tV, sin y = ^j, sin 2 = 5^, and

X, y, z all lie in the first quadrant.

.9. As in exercise 8, when x, y, z all lie in the second quadrant.

10. Calculate cos (x + y + z) when cos x = |, cos ?/ = if, cos z = H, and

X, y, z all lie in the first quadrant.

11. As in exercise 10, when x, y, 2 all lie in the fourth quadrant.

12. Calculate tan (x + y) when tan x = 1 and cot y = V3.
13. Calculate all values of sin 2{x -y) and of tan {2x -y) when tan x = i

and tan y = j\.

14. Calculate all values of cos (a + /?) when tan a = m and tan ^ = n.

15. Calculate cot (a — /3) when tan a == a + I and tan /3 = a — 1.

16. Calculate tan (a + /8) when tan a = ——r and tan (8 = ^—xT"X -f- 1 Z X "T 1

17. If tan a = f and tan /3 = j\, calculate tan (2 a + /3).
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18. Calculate sin 75°, cos 75°, and tan 75°, by use of the relation (a) 75°

= -iy-; (b) 75° = 135° -60°.

19. Calculate the functions of 202^; of 7^°.

Prove the following identities:

20. sin X sin (y — z) + sin y sin (z — x)+ sin z sin (x — y) = 0.

21. cos X sin (y — z)+ cos y sin (2 — x) + cos 2 sin (x — y)= 0.

22. cos (x+ y) cos {x — y) + sin {y+ 2) sin (y—z) — cos (x+ 2) cos (x — 2) = 0.

23. cos (x — y + 2) = cos x cos y cos 2 + cos x sin y sin 2

— sin X cos 2/ sin 2 + sin x sin y cos z.

24. sin 3 X = 3 sin X — 4 sin^ x. t^ _. cos (a + /3)

26. cos 3 X = 4 cos^ x — 3 cos x.

3 tan X — tan^ x

1 - 3 tan2 X

cot3 X — 3 cot X

- - ^ o 3 tan X - tan3 x _.
26. tan 3 X = -^j 5-—s 31.1—3 tan2 X

27. cotSx

28. tan 4 9

3 cot2 X - 1

4 tan g (1 - tan2 g)

1 -6tan2|9 + tan4
9'

sin a cos /3
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59. cot20-l =2cot0cot2&. _ 1 - cos 2

x

60. 2 - sec20 = sec''0cos2e.
^'^' ^an x -

^ _^ cos2a;'

Ri ^°^ 2 '' 1 - tan g cos 3 (?, sin 3 9 ^ ^ ^^^' l+sin2g = r+^^- 64. --j-^+___-=2cot2e.

62. '-^^ = 2COS2X - 1. 65.
^^"^ + ^"^^ = sec2..

cos X cot 9 - tan

66. tan (45° + <?i) - tan (45° - 0) = 2 tan 2 0.

g_ cos3 9!) + sin^ ^ 2 — sin 2

cos + sin 2

_- cos5 (J)
— sin^ (h , . , . „ , . „

68- ^;;;ri -r—f = 1 + |sm2x- isin22x.
cos 9 — sin 9
sin X + cos X , ^ „

69. ^ = tan 2 x — sec 2 x.
cos X — sm X

4 tan2 X
70. sin 2 X tan 2 X =

tan^x

71. cos2 + sin2 cos 2 ^ = cos2 (p + sin2 (^ cos 2 5.

72. 1 + cos 2 (i9 - (;i) cos 2 ^ = cos2 d + cos2 {d - 2 cjj).

tan2f9 + ^]- 1

73. ) i( = sin20. 75. tanx = smx + sin2x
.

tan2^ + ^)+l 1+COSX + COS2X

4/ ^ , ^ _« . sin 2 X — sin X
COS

(
X -\-

74. 7 ^ = sec2x— tan2x. 76. tanx-,
COs(x-^) 1-COSX + COS2X

77. sec25-Uan2gsin2g = ^5g^+4^.
cot2 - tan2g

sin g + cose ^ /l+sin2g . 84. i±-!5^ = 2cos2 ^.
"sine-cose yi-sin2e sec 2

79. (sin
I
+ cos ^)^ = 1 + sin e.

^^- ^^^~ ^ = ^ tan ? esc x.

I e e\2 -. 1 + cos 3 ^80!)
80. (^sin- - C0S2J = 1 - sine. 86.

^j^^ 3 ^ = cot— -

1 ^f ^ «7 1 + sin 45°
, -_,„

1 + tan - 87. .-0 = tan 67=t°.

81.
1 — sin e , ^ e «^ 1

1 — tan
2 sec e + tan

tan - QQ 1 + sin x + cos x
o o!'« :;—;—;- — = COt x
i = «oo ^ _ tor, -,.

l+sinx-cosx 2sec X — tan x.

1 + tan|
90_ t^^l ^ /2^nx-sin2x.

J. J.
2 y/ 2 sin X + sin 2 X

83. tan X — tan p,
= tan X sec X. .. ,.- . „^„ „ ^

2 2 91. V3 sin 75° - cos 75° = '\/2.

no-5e e .9e 3e, . . ^92. sm cos — sin — cos - + cos 4e sin 2e = 0.

93. sin 4 X + sin 2 X = 2 sin 3 x cos x.

94. sin 3 X + sin 5 X = 8 sin x cos2 x cos 2 x.
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-_ cot 15° + tan 15° 2 ^„ . ,,,^„ . ,^o . „^„
95. , ,^o , r^ = —-• 97. sin 100° - sui 40° = sin 20°.

cot 15 — tan 15 ^^3

96.
^~^^^"^'^°

=-cotCO°. 98. cos(j+a)+cos
l-V2cos75° V"^

100. cos (e + 0) - sin {d -
<l>)
= 2 sin f^ - o) cos

(^
- (/.V

V2.

101. 2 sin
I
a + , j

sin
|
a — 7 1 = sin2 a — cos'^

.

102. sin
I ^ + a j

— sin
I
^ — a

I

= V- sin a.

V3-l_,,o
103. sin 40° - sin 10°

V2
tn.A • r, . • . - n ../v.- Sin 75 + sin 15 17,

104. sin 3 X + sm x = 4 sm x cos2x. 105. ~.—^^^^ -.—^^^ = y3.
sin 75 — sin 15

^Qg^
COS x + cosy ^ _ ^^^

X +^ ^^^
X-

y

cos X — cos y 2 2

.„ sin 70° + sin 20° . ..„ sin 100°+ sin 40° .., , _„
107. -^o ,

p^TT^ = 1. 108. - ,„^ .r>o = V3 tan 70
cos70 +cos20 sin 100° — sm 40

109
(sin « + sin 0) (cos a: + cos 0) ^ _ ^^^2
(sin a — sin 0) (cos a — cos 0)

j^^Q
(sin g + sin 0) (cos a - cos 0) ^ _ ^^^g
(sin a — sin /3) (cos a + cos 0)

111.
(sin 75° + sin 15°) (cos 75° + cos 15°)

(sin 75° — sin 15°) (cos 75° — cos 15°)

., ^
_ cos 2 X + cos 12 X cos 7 x — cos 3 x ^ oi.* ^ -^ _ /%

cos 6 X + cos 8 X cos x — cos 3 x sin 2 x

113. sin X + sin 2 X + sin 3 X = 4 cos ^ x cos x sin | x.

(Hint. Replace sin x + sin 3 x by 2 sin 2 x cos x and sin 2 x by 2 sin x cos x

;

from these results factor out 2 cos x and combine the remainders by the for-

mula for sin u + sin v.)

114. cos X + cos 2 X + cos 3 X = 4 cos ^ X cos x cos i x — 1.

115. sin 2 X + sin 4 X + sin 6 X = 4 cos x cos 2 x sin 3 x.

... sine +sin20 + sin3 ^ _„
116. -^, K-^'r o-^ = tan

2

9.
cos6» + cos2e + cos3

117. cos 20° + cos 100° + cos 140° = 0.

118. cos 9 + cos 3 + cos 5 + cos 7 = 4 cos 5 cos 2 cos 4 6.

119. sin + sin 3 + sin 5 + sin 7 = 16 sin cos2 cos2 2 0.

120. 4 sin2 f,6 cos2 </. + (cos2 ^5.
- sin2 f/j)2 = 1.

• 121. (cos xcosy + sin x sin y)^ + (sin x cos y — cos x sin y)- = 1.

. „- tan 3 X — tan X . ^
122.

, , .

—-—7 = tan 2 x.
1 + tan 3 X tan x

123.
tan (n + 1)0 — tami

1 + tan (n + 1)0 tan;
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124. /r/'+/l"!r'^^=tang.
1 + tan {e + ^) tan

^„, tan (0 — </))+ tan (i

125. :; f

—

,, ,, ,
——, = tan e.

1 — tan (fl — (j)) tan ^
126. sin ne cos + cos nO sin & = sin (n + 1) ^.

127. 2 CSC 4 X — 2 cot 4 X = cot X — tan x.

128. 1^^«^ = (1 + cos 2 x)2. 129. '^ - '-^ = 2.
1 — cos X sin cos 9

2cosx
130. Iftanx =-, show that \/^-4 + v/^-rT =

,a \ a-b \ a + b ^cos 2 x

131. 4 cos3 X sin 3 X + 4 sin' x cos 3 x = 3 sin 4 x.

132. sin3 X + sinS (120° + x) + sin3 (240° + x) = - f sin 3 x.

133. cos 6 X = 16 (cos6 x — sin^ x) — 15 cos 2 x.

134. 1 + tan^ x = sec* x (sec2 x — 3 sin2 x).

^__ 3 sin X — sin 3

X

135. 5 1 5- = tan3 x.
3 cos X + cos 3 X

136. sin 2 X sin 2 2/ = sin2 (x + y) — sin2 (x — y).

137. sin 5 a sin a = sin2 3 a — sin2 2 a.

138. cos* a = ^ (3 + 4 cos 2 a + cos 4 a).

139. cos 2 X + cos 2 2/ + cos 2 z + cos 2 (x + 2/ + 2) = 4 cos (x + y) cos (y + z)

cos{z + x).

140. sin2x + sin2y + sin2 3 + sin2(x + y +z)= 2 — 2cos (x+?/)cos (y + z)

cos (z + x).

141. cos2 X + cos2 y + cos2 z + cos2 (x + y — 2) = 2 + 2 cos (x + y) cos(x — 2)

cos (y — 2).
,^^'

/^ y X — Z V "T~ 2
142. sin (x — y — z) — sin X — sin y — sin z = 4 sin —;^sin _ sin —^

—

143. sin 2 a + sin 2/3 + sin 2 7 = sin 2 (a + /3 + 7) + 4 sin (a + ^) sin (fi + y)

sin (a + 7)-

144. sin (a + /3 - 7) + sin (a - /3 + 7) + sin (/3 + 7 - a) - sin (a + /S + 7)

= 4 sin a sin /3 sin 7.

145. cos (a + /3 - 7) + cos (/3 + 7 - «) + cos (a + 7 - /3) - cos (a + /3 -}- 7)

= 4 cos a cos /3 cos 7.

146. Show that the equation sin x = a + - ib impossible.

147. For what values of a will the equation 2 cos x = a + - give possible

values for x ?

148. Show that 2 sin = = — Vl + sin x — Vl — sin x, provided that x lies

in the second or third quadrant.

X

2

in the second or third quadrant.

150. When x lies in the fourth quadrant, show that

2 sin 2 = Vl - sin x — Vl + sin x.



CHAPTER IX

SliZ X tCLTi jC

Ratios-—^and Inverse Functions. Trigonometric
X X

Equations

160. The limits of the ratios ^^^ and ^^^-^ • Let a: = Z NOP

(figure) lie between 0° and 90°; let NP be a circular arc with center

at 0, and MP and NT _L ON. Then

MP <NP < NT;

MP NP NT
hence -qP^OP^OP'
or sin X < x (radians) < tan x.

That is, the radian measure of any

acute angle lies between the sine and the tangent of the angle.

From the last inequality we have, on dividing l)y sin x,

X
1 < -7^— < sec X.

sm X

Suppose X to decrease and approach 0. Then sec x = I, and con-

sequently also ^^— = 1 and -= 1.
sui X X

TT ,. sinsc
-Hence hm = 1.

Dividing the third of the above inequalities by tan x, we have

X
cos X < : < 1

;

tan X

letting X approach zero we have

,. tan X
lim = 1
x = ^

Hence, the ratio of either the sine or the tangent to the angle (in

radians) approaches 1 as its limit ivhen the angle approaches zero.

133
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When angle x is small, these ratios will be nearly equal to 1;

that is,

sin X . ,
, tan x ^

,= 1 + e and = 1 + ei,
X X

where e and ei are small quantities. Hence

sin x = a: + ex and tan x == x -{- eix.

Neglecting the small terms ex and eix, we have

sin X = tan x = x approximately, when x is small.

Hence when x is small, sin x and tan x are nearly equal to x {in

radians)

.

The degree of this approximation is indicated by the following

values:

Angle X.

Degrees radians sin x tan x

1° .0174532925+ .0174524064+ .0174550649+
1' .0002908882+ .0002908882+ .0002908882+
1" .0000048481+ .0000048481+ .0000048481+

Exercises.

1. How large may x be if the approximations

sin X = a; and tan x = x

are to be correct to four places inclusive? (Table.)

2. In what decimal place is the error of the approximations

sin 30° = 30 sin 1° and tan 30° = 30 tan 1°?

3. How large may n be if the approximations

sin n° = n sin 1° and tan n° = n tan 1°

are to be correct to three decimals inclusive ?

4. As in exercise 3, for the approximations

sin n' = n sin 1' and tan n' = n tan 1'.

161. Inverse Trigonometric Functions.— It is often convenient

to specify an angle, not by its degree or radian measure, but by

the value of one of its functions. Thus .we may speak of 30° as

"an angle whose sine is .\." There is of course an ambiguity

here, since 30° is only one of the angles whose sine is *.
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If X is an angle whose sine is a, we write

X = sin -
1 a,

which may be read "a: equals an angle whose sine is a," or "a;

equals the inverse sine of a," or '' x equals anti-sine a."

Similarly the equation

X = tan~^ a

is read "a: equals an angle whose tangent is a," or "x equals the

inverse tangent of a," or "a: equals anti-tangent a," and so on for

the other functions.

Obviously the equations

X = sin - ^ a and sin a: = o

are equivalent. Similarly for

X = tan - ^ a and tan x = a,

X = sec ~^ a and sec x = a,

and so on.

It should be noted that "~^"
in sin-^ a is not an exponent; it

might equally well have been written as a subscript, sin - 1 x, or

in any other convenient way. The reason for writing it as above

will appear by noting that, according to the laws of exponents,

the algebraic equations

X = h-'^a and bx = a

are equivalent.

When it is necessary to write sin x with an exponent — 1, it

should be written (sin x)-^ 7iot sin-^a:.

The smallest positive angle whose sine is a is often called the

principal value of the symbol sin-^a. Similarly for the other

functions.

If 6 denote the principal value of any inverse function, we have

from (146), equations I, II, III, •

sin - 1 a = 2 nw -\- 6, or esc - ^ a = 2 rnr + 9, or

(2/i + l)7r-0; (2n + l)ir-d;

cos- '^ a = 2 riT ± 6;y sec^ a = 2 mr ± 6;

tan -^ a = HTT -^ 6; cot'^ a = nr + 6.
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162. Equations Involving Inverse Functions. — In this article

we shall restrict the symbol for the inverse functions to mean

only the principal value of the function. Thus, sin-H shall mean

the angle 30° only, tan- U = 45°, and so on.

Exayn-ple 1. Show that sin-i^ = cos-i ^•

3 4
Let X = sin-i^ and y = cos-i^;

to prove that x = y,

or that sin x = sin y.

(We use the sine for convenience; any other function might be used.)

. 3 . .„_,3
Now

Also cos?/ = ^; hence sin y = yl — cos 2/2 = _. q. e.d.

4
Example 2. Show that 2 tan-i2 = sin-i ^•

4
Let X = tan- 12 and y = sin-i^;

to prove that 2x = y,

or that sin 2 x = sin y.

Now sin 2 X = 2 sin X cos x.

2 1
But tanx = 2; hence sin x = —p and cosx==—p- (149.)

4
Therefore sin 2 x = - = sin y. q. e. d.

Observe that if x were not restricted to be the principal value of tan-i2,

2
we might have sin x = p-

V5
2

Example 3. Show that tan-i - + tan-i 2 + tan-i 8 = x.

2
Let X = tan-i-; y = tan-i2; z = tan-i8;

2
then tan x = -

; tan y = 2; tan z = 8.

To prove that x + y + z = n,

or that x + y = w — z,

or that tan {x + y) = tan (tt — 2) = — tan z.

XT X / . \ tan X + tan y § + 2 _ •

,Now tan (x + y) = -z . .
= I j = - 8 = - tan z. q. e. d.

" 1 — tan X tan y 1 — |

Example 4. Show that tan-i a = sin-i
,

when a > 0.

Vl + a2

Let X = tan- la and 2/ = sin-

Vl + 0.2

then tan x = a and sin y =
Vl +a2
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To prove that ^ = V,

or that sin x = sin y.

Now since x and y stand for principal values, and a is positive, both angles

are in the first quadrant.

Then from tan x = a we find (149)
ffl

sin X =
, _ ,

Vl+a2
which is sin y. q. e. d.

Discuss the above example when the symbol for the inverse

functions is assumed to stand for all angles having the function

in question, instead of the principal value only.

163. Exercises.

1. Show that the equation in example 4 is not true for principal values

when a is negative. (Try a = — 1.)

Prove the following:

,5,, ,1 TT 6. cos-ii+2sin-iA = 120°.
2. tan-i^ + tan-ig = ^. ^ 2 tan-i 3 = sin-i f.

3. 2tan-ii=tan-i|.
g^ 3 sin- 1

.^
= sin- 1 -| •

4. tan-i3+^ = tan-i(-2).
^ o cot-i2 = csc-i |.

5. tan-i^ + csc-i VlO =^- 10. 4tan-ii = tan-i^^g + |-
2

11. tan- 1 ^ + tan-
1
1 + tan- 1

(

^

,4 ,
. , 8 , . ,13 TT

12. sm-i^ + sm-i^ + sm-ig^ = 2-

13. cos-i|i + 2tan-4 = sin-i|-
65 5 5

i>i o. ,2 ,5 . ,33
14. 2 tan- 1 - — esc- 1 - = sm- 1 — •

3 o 65

')-

15. sin- 1 a = cos- 1 Vl — «^> if « > 0-

2w
16. 2 tan- 1 ?« = tan-

1

1 -m2
cot2 e - tan2 (9

1

17. 2 tan- 1 (cos 2 0)= tan

164. Trigonometric Equations. — A trigonometric equation is

an equation which involves one or more trigonometric functions of

one or more angles. Thus:

sin^ x-\- COQX = 1 ; tan + sec ^ = 3; cot a esc a = 2.

To find the values of the angle which satisfy such an equation,

it is usually best to use a method adapted to the case in hand.

We give here one general rule, which covers a considerable variety

of cases.



138 TRIGONOMETRIC EQUATIONS [165

Rule: To solve a trigonometric equation, express all its terms

by means of a single function; solve as an algebraic equation, con-

sidering this function as unknown; find the angles corresponding

to the values of the function so obtained. Check all answers hy

substitution.

Examples.

1. sin2 X + cos X = 1.

Expressing all terms by means of cos x, we have

1 — cos2 X + cos X = 1, or cos2 X — cos X = 0.

cosx = 0, or cosx = 1.

Hence x may be any odd multiple of | or any multiple of 2 7r; i.e., if n be

any integer or zero,

x=±(2n + l)^ or x=±2mr.

Exercise. Check these answers by substitution.

2. tan0 +sec0 = 3.

Expressing all terms by means of tan d, we have

tanO ± Vl +tan2!? = 3, or ± Vr+tan2(? = 3 _ tanff.

Squaring and reducing,

tan = ^ ; hence = 53° 8' ± nir.

o

When n is odd, these values of e do not satisfy the given equation. Hence the

solutions are
= 53° 8' ± 2 nir.

3. cot a CSC a = 2.

Then ± cot a Vl + cot2 « = 2, or cot^ a + cot2 a = 4.

Hence cot a = ± V— | ± ^ Vl7.

Using the upper sign under the radical (the lower sign makes a imaginary),

we have
cota = ± 1.2496+ ; hence a = ± 38° 40' ± nir.

When n is odd, the values of a must be discarded. Hence

a = ± 38° 40' ± 2 nx.

The reason for the additional values in the last two examples is that in

example 2 we really solved both the equations tan e ± sec 6 = Z, and in exam-

ple 3, both the equations cot a esc a = ± 2.

165. Examples Illustrating Special Methods. — These depend

chiefly on transforming the given equation by means of some

of the standard formulas.
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4. 2 sin2 X — 3 sin x cos x = 1.

Since 2 sin2 x = 1 — cos 2 x and 2 sin x cos x = sin 2 x, we have

3 9
1 — cos2x - -sin 2x = 1, or tan2x=— ".

^ 6

Hence 2x = tan-M -
^J

= - 33° 41' ± titt.

X = - 16°50'.5 ± n|-

Exercise. Check these answers. Solve the given equation by expressing

cos X in terms of sin x.

5. sin 3 v/ — sin 2 f/ = 0.

By formula (21) of (158) this becomes

5.1^
2 cos 2 ?/sm~?/ = 0.

5 1
Hence cos ^ ?/ = or sin - ?/ = 0.

^y = ± {'^ n ^r \)\^ ov ^y = ±nir.

2/ = ± (2n + l)^, or y = ±2 nir.

6. cos X + cos 3 X + cos 5 X = 0.

Since cos x + cos 5 x = 2 cos 3 x cos 2 x, we have

2 cos 3 X cos 2 X + cos 3 x = 0, or cos 3 x (2 cos 2 x + 1) =0,

Hence cos 3 x = 0, or cos 2 x = — -

3x = ±(2n + l)2. or 2x=±^^±2mr.

X = ± (2 n + 1) ^ or ± 5 ± n-n-.

7. tan 4 a tan 5 a = 1

.

This may be written tan 4 a = cot 5 a. But when the tangent of an angle

A equals the cotangent of an angle B, A + B must be an odd multiple of J

Hence 4a4-5a= ± (2n + l)|

a=±(2n + l)^-

Here a is any odd multiple of 10°.

Otherwise thus: tan 4 a — cot 5 a = 0; hence—-; :—r— = 0:
cos 4 a sm a

sin 4 a sin 5 a — cos 4 a cos 5 a cos 9 or
or —

cos 4 a sin 5 a cos 4 a sin 5 a

cos9a = 0, or 9a=±(2n + l)^.
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Exercise 1. Check these answers. Draw figures for several values of a as

10°, 30°, 50°, 70°. Discuss the case a = 90°.

Exercise 2. In example 7, in passing from the first equation to the second

we divide by tan 5 a, which is permissible only if tan 5 a ?^ 0. Justify the

division.

Exercise 3. Justify the division by cos x in example 4.

8. a sin + & cos B = c.

We might reduce to sin e or cos e and proceed according to the rule of (164),

A method much preferred in practice is as follows.

In place of a and h introduce two new constants in and M such that

(o = 7/icosM, ^
(m=V^M=;6^

w • Ttf whence \ ,, . , o/6=msmAf; >M=tan-i--

The given equation then becomes

m (sin cos M + cos 6 sin M) = C or sin {d + M) = —

.

Hence if we let sin- 1 x represent all angles whose sine is x,

+ M =sin-i — , or = sin-i M.m m

Va2 +62 a

Graphic Solution. As an example, we take the equation

sin 2 + sin e + 2 = 0.

We want the values of d which reduce the expression sin 2 ^ +

sin + ^ to zero.

Let 1/ = sin2 + sin^ + s-

Calculate y for a series of values of ^, as = 0°, 10°, 20°, . . .
,

and plot the points (^, y) in rectangular coordinates. The result-

ing curve will show the approximate values of Q for which y is zero.

Any convenient scales may be used on the axes of Q and y.

Let the student read off the required solutions from the graph

below.
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Exercise. By means of this graph solve the equations

(a) sin 20 + sin0= 0;

(b) sin20 +sin(?= 1;

(c) sin20 + sin0= \.

166. Exercises. Solve the following equations:

1. 2 sin2 X — 3 cos x = 0.

2. 4 sin2 a + 1 = 8 cos a.

3. sin a + cos a = V2.
4. tan e + coi9 = 2.

5. tan /3 + 3 cot /3 = 4.

6. 2 sin2 X + 3 = 5 sin X.

7. 2 (1 — sine) = COS0.

8. 5 sin e + 10 cos = 11.

9. cos 2 X = cos^ X.

10. 2 cos 2 X = 1 + 2 sin x.

11. 4 cot 20 = cot2 0-tan2 0.

12. cos = sin 2 d.

13. tan 2 X = 3 tan x.

14. sin 2 2/ = cos 3 y.

15. tan a = cot 3 a.

16. cot 8 ?!> = tan ^.

Solve some of the above equations

12, 13, 14, 15, 26, 28, 29.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29

30.

graph

sec px = CSC qx.

tan ?/ = cot 6 y.

sin rd = sin sd.

cot (30° - x) = tan (30° + 3 x).

sin 4 a = cos 5 a. _
sin(60°-x)-sin(60°+x)=iV3.

sin 2 + sin 4 = V2 cos d.

sin(3O°+0)-cos(6O°+0) =-.VV3.
sin 4 a = cos 3 a + sin 2 a.

sin 3 /3 + sin /3 = cos /3 — cos 3 /3.

sin X + sin 2 X + sin 3 X = 0.

sin X + sin 3 X + sin 5 X = 0.

cos X + cos 2 X = 008 i x.

ically, in particular 1, 2, 4, 5, 7, 8,
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167. Simultaneous Trigonometric Equations.— We shall now
give some examples to illustrate methods for solving a system

of simultaneous trigonometric equations for several unknown
quantities. To express answers concisely, we shall now use the

symbols for the inverse functions to mean all the angles deter-

mined by the given function.

Examples.

1. Solve for r and 6: r cos0 = x,

r sin a = y.

Squaring and adding, r^ = x^ + y^;

hence r = ± Vx2+t^.

Divide the second equation by the first,

tan ^ = -
; hence 6 = tan- 1

-

.

a;

'

.
X

2. Solve for a and /3:

a sin a + 6 sin (3 = c,

d sin a + e sin (S = /.

Solve for sin a and sin /3 as unknowns; hence get a and 0.

Exercise. Carry out the solution of example 2. Is the solution possible

for all values of a, 6, . . . ,/? (62.)

3. Solve for r and d:

dr sin + &r cos = c,

a'r sin 9 + Vr cos 6 = c'.

Solve for y sin 6 and y cos as unknown; then proceed as in example 1.

Exercise. Carry out the solution in example 3.

4. Solve for X and 2/

:

y = sin x,

y = sm2x.

Subtracting, sin 2 x — sin a; = or 2 sin x cos x — sin x = 0.

Hence sin x = or cos x = A.

X = ± nw or ± 60° ± 2 mr.

y = or ± i V3.

Exercise. Solve example 4 graphically.

5. Solve for y and <: y = a sin (n< + &),

y = a' sin {nl + b').

Equating the values of y, and expanding,

a (sin ni cos b + cos nt sin b) = a' (sin nt cos b' + cos nt sin b').

Dividing by cos nt and solving for tan nt,

a' sin b' — a sin b
tall nt = r ; r,

•

a cos — o cos b'

This determines a set of values of nt. Then y is obtained by substituting

in either of the given equations.
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6. Solve for r, 9, and f/>: x = r cos 6 cos (f>,

y = r cosO sin 0,

z = r sin 6.

Dividing the second equation by the first, we have

- = tan 0: hence 6 = tan-i -•
X ^' '^

X

Squaring the first two equations and adding,

x2 4- 2/2 = r2 cos2 0; hence r cos 5 = ±\Jx^ + ?/2.

Combining this result with the third equation, as in example 1, we have

tanO =
; hence = tan"

± Va;2 + 2/2

'



CHAPTER X

Oblique Plane Triangles

169. Between the six parts of a plane triangle there exist,

aside from the angle-sum equal to 180°, two other fundamental

relations which we proceed to obtain. Additional relations will

then be derived from these.

The Law of Sines.— In any plane triangle, the sides are pro-

portional to the sines of the opposite angles.

Let ABC be the triangle, CD one of its altitudes. Two cases

arise, according as D falls within or without the base (figures).

Then in the first figure,

from A ACD, h = bsmA;

from A BCD, h = asmB;

equating the values of h,

b sin A = asm B, or a : 6 = sin A : sin B.

In the second figure,

from A ACD,

from A BCD,

h = h sin (t — A)= h sin A
;

h = a sm B;

equating the values of h, we find the same result as before.

144
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By drawing perpendiculars . from the other vertices and com-
bining results we have the Law of Sines,

(1) a:b.c = smA:sinB : sin C.

170. The Law of Cosines.— In any plane triangle, the square

of any side equals the simi of the squares of the other two sides, minus
twice their product by the cosine of their included angle.

In the above figures let AD = m. Then

First figure. ' - Second figure.

in AACD, m = b cos A; m = b cos(ir—A) = —h cos A;
inABCD, a^ = h'^-{-{c-m)2 a^ = h^-\-{c-\-my^

= h^+c^-2cm+m^ =h^-\-c^-^2cm+ m~
= 62+c2-2cm. =62+c2+2c?/^

Replacing m by its value above, we have in either case,

(2) tr = ft' + c' — 2 be cos A.

(2') Similarly, b^ = tr -{ c' — 2 ac cos B.

(2") jci = ff' -\-b'*-2 (lb cosC.

171. The Law of Tangents.— In any plane triangle, the dif-

ference of two sides is to their sum as the tangent of half the difference

of the opposite angles is to the tangent of half their sum.

From the law of sines we have,

a _ sin A
b
~ s'mB'

By composition and division, and subsequent reduction we have,

a — b sin A — sin B
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Similarly,

(3')

(3")

«-c _ tan|U- C)

a-j-c tan J (^ + C)

'

&- c _ tan 3 (B - C)

& + c~ tan|(^+ C)
3

The symmetry of these formulas makes them easy to remember.

In actual practice, they are used in slightly modified form. Thus

the first of them is written,

tan^(A - B) = ^tan^(A +5).

Similarly for the other two.

172. Functions of the Half-Angles. — When the three sides of

a triangle are known, its angles are best calculated by the formulas

now to be derived.

From the law of cosines we have,

62 + c2 - a2
cos A

2 6c

In practice this formula is not convenient unless a, 6, and c

happen to be small numbers. Now

1^^^1-cosA, (^^^^^^^^1-^.)sm^

But 1 — cos A 1
-

2 6,
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Similarly,

. 1 , /(s - a) {s - c)

(4') sm-^ = \/ ^^

(4") sin
1 „ _ / (s - a) (s - />)

3 ^ " V ah

Observe that the sides appearing explicitly under the radical

include the angle to be calculated.

To obtain cos j A, we have

cos^A=y/^ ,

X 2 _1_ f,'.

But 1+ cos A = 1 +
2 6c

(b + c)2 - a2

2 6c

(6 + c + g) (6 + c - g)

2 6c

4 g (g. — a)

2 he '

Hence
1 . /s(s - a)

V 6c(5) cos-^ = V^^
Similarly,

2 V ac(50 cos^

1 ,
/s (s — c)

(5") "=5C = V^^-
Dividing sine by cosine we have

(6) tanl.^s/il^ffj^-

(6") tanlc = v/(l^^^i^.

If
_ J (s - <i) (s - b) (s - c)
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then

(7) tani^
2 s — a

(7") tanic = ;^^.

All these formulas for the half-angle should be memorized,

preferably in verbal form, so that a single statement contains all

three formulas of any one set.

173. Solution of Plane Oblique Triangles.— A triangle is deter-

mined, except in such cases as will be specially mentioned, when

three parts are given, of which one at least must be a side. ,The

calculation of the other parts is called ''solving the triangle."

Four cases arise, according to the nature of the given parts.

I. Given two angles and one side.

II. Given two sides and their included angle.

III. Give7i two sides and an opposite angle.

IV. Given three sides.

The method for treating each case will now be considered.

174. Case I. Given two angles and one side, as A, By a.

Formulas for finding the other parts, C, h, c.

C = 180°- {A +B).

From the law of sines,

sin B sin C= a-—

7

; c = a -.—r.
sm A sm A

Check. It is important to have a check on the accuracy of the

calculated parts. For this purpose use any formula involving as

many as possible of these parts.

In this case we use

6 sin B 7 • /-* • D- = -;—7= , or 6 sm C = c sm B.
c sm C

Example. Given A = 50°, B = 60°, a = 150.

To find C, b, and c.
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Solution by Natural Functions.

C = 180° - (50° + 60°) = 70°.

= 169.58.
- sinS
h = a-—T =

sin A
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On making these calculations with the data in our example the

scheme appears as below.

A+B = 110°.

log a = 2.1761

log sin B = 9.9375

colog sin A = 0.1157

log h = ^2293

h = 169.6

Check. log h = 2.2293

log sin C = 9.9730

2.2023

C = 180° - 110° = 70°

log a = 2.1761

log sin C = 9.9730

colog sin A = 0.1157

log c = 2.2648

c = 184.0

log c = 2.2648

log sin B = 9.9375

2.2023

Remark. In calculating with four-place logarithms, three sig-

nificant figures of the resulting numbers are usually correct. The

fourth figure should be retained, but may be one or more units in

error. It is rarely worth while to retain more than four significant

figures.

A similar remark applies to 5-, 6-, and 7-place tables. See

chapter on numerical computation.

Graphic Solution of Case I
;
given

A, B, and a.

Calculate C = 180° - {A + B).

Lay off a line segment equal to a

and at its extremities construct an-

gles B and C, prolonging their free

sides until they meet at A (figure).

Scale off the lengths of b and c. The

figure shows the triangle already

^ solved above. From it we have

b = 167, c = 181.

No solution is possible when A -\- B > 180'

Exercises.

solutions.

Solve the following triangles, including graphic

1. A = 55°

2. A = 6.5° 25'

3. C = 34° 48'

4. B = 115° 10'. 5

5. J3 = 88° 20'

B = 72°

B = 78° 23'

A = 100° 17'

C = 40°22'.3

C = 105° 30'

a = 1000.

a = 4.245.

6 = 0. 5575.

c = 0.00275.

a = 10.
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175. Case II. Given two sides and the included angle, as

a, b, C.

To solve the triangle we calculate H^ + ^) as the comple-

ment of AC; then h {A - B) is calculated by formula (3). Angles

A and B are then determined and hence all the angles are known.

We can then compute c in two ways by means of the law of sines.

The agreement of the two values of c furnishes a check on the

computations.

Formulas.

HA+B)=90°-hC
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Logarithmic Solution.

HA+B)=90°-hC = 90°- 13° 42' = 76° 18'.

a = 20.63 log (a - 6) = 0.9074 HA-\-B)= 76° 18'

b = 12.55 eolog (a + 6) = 8.4792 ^iA-B)= 44° 58'.4

a + 6 = 33.18 log tan H^+ g)= 0.6130 A =131° 16'.4

a-b= 8.08 log tan h{A-B)= 9.9996 B = 31° 19'.6

1.3145

9.6630

0.0682

log a =
log sin C =

cologsinA =

logc =

B) = 9.9996

log b =
log sin C =

cologsin5 =

logc =

A =131'

B = 31'

1.0986

9.6630

0.2841

1.04571.0457

c = 11.11 c = 11.11

Graphic Solution. This is shown in the figure above,

student scale off the known parts.

Exercises. Solve the following triangles:

Let the

1. a = 1500,

2. 6 = 15.25,

3. a = 1.002,

4. & = 6238,

5. a = 16.21,

b = 750,

c = 12.65,

b = 0.8656,

c = 4812,

c = 22.48,

C = 58°.

A = 98° 40'.

C = 130° 48',

A = 75° 22'.

5 = 36° 54'.

176. Case III. Given two sides and an opposite angle, as

a, 6, A,

This is known as the ambiguous case. We begin by studying the

graphic solution.

Lay off angle A and on one of its sides take AC= b. With C as

center and radius equal to a, strike an arc of a "circle. The figures

show the various possibilities arising in the construction, the first

three for A < 90°, the last three for A > 90°.
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In each case the perpendicular from C on the other side of angle

A is equal to 6 sin A. Inspection of the figures then shows that

when A < 90° and a < 6 sin ^, no triangle is possible;

when A < 90° and a = b sin A, a right triangle results;

when A < 90° and b > a > b sm A, two oblique triangles result;

when A < 90° and a > b, one oblique triangle results;

when A > 90° and a = 6, no solution is possible;

when A > 90° and a > b, one oblique triangle results.

It is always possible therefore to state in advance what the

nature of the solution in a given case will be.

Formulas. Given a,b, A.

f

. „ b . . (C = 180°-(A + 5).
sinB = -sniA. „ ' ^,.

B' = 180°-5.

sin C , sin C
c = a-—7 = b-—^'

smA sin is

, sin C , sin C
c = a -.—T- = 0-.—

^

sin A sin B

Check. The agreement of the values of c and c' as calculated

from the two expressions for each of them furnishes a partial

check on the calculations. It does not guard against an error in

log sin C, which may be checked independently. A complete

check is furnished by (6) of (172).

In carrying out the calculations according to the formulas above,

the various cases shown in the figures are indicated as follows:

(a) log sin B = 0; no solution, or right triangle.

(b) retain both B and B'; two solutions.

(c) A + B' > 180°, hence reject B'; one solution.

(d) log sin B =0; no solution.

(e) A -\- B > 180° and A -\- B' > 180°; no solution.

(f) As in (c); one solution.

In a given numerical example the nature of the solution always

becomes apparent during the progress of the computations.
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Example. Given a = 602.3, b

Logarithmic Solution.*

log6 = 2.88316 loga =

colog a = 7.22019 log sin C =
log sin A = 9.79217 colog sin A =
log sin S = 9.89552 logc =

B = 51° 50'.0 c =
5' = 138°10'.0 loga =

A+B = 90° 7'.3 logsinC' =

A+B' = 166°27'.3 colog sin ^ =

C = 89° 52 '.7 log c' =

C = 13° 33'.7 c' =

= 764.1, A = 38° 17'.3.

2.77981 log6 = 2.88316

0.00000 log sin C = 0.00000

0.20783 colog sin B = 0. 10448

2.98764
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Example. Given a =
Logarithmic Solution.

a 428.6

h 806.2

c 542.4

428.6, h = 806.2, c = 542.4.

cologs 7.0513

log (s - a) 2.6628

log(s - h) 1.9159

l_A 14°47'.7

A B 55° 51 '.5

\ C 19° 20'.5

2 s 1777.2
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by (4') and (5') of (172). Hence,

(9) JS: = Vs (s - a){s - b){s - c).

When the given parts of the triangle are such that neither of the

above formulas applies directly, it is usually best to calculate

additional parts so that one of these formulas may be used.

179. Exercises and Problems.

1.

a = 183.9,

b = 584.9,

c = 166.6.

5.

a = 183.7,

A =36° 55'. 9,

C =70° 58'. 2.
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33.
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63. Find the lengths of diagonals and the area of a parallelogram two of

whose sides are 5 ft. and 8 ft., their included angle being 60°.

64. Two sides of a parallelogram are a and b, their included angle C; show

that the area is ab sin C.

,

65. The sides of a triangle are 4527, 7861, 6448; find the length of the

median drawn to the shortest side.

66. The sides of a triangle are in the ratio of 2 : 3 : 4; find the cosine of

the smallest angle.

67. The angles of a triangle are as 3 : 4 : 5; the shortest side is 500 ft.;

solve the triangle.

68. The angles of a triangle are as 1 : 2 : 3; the longest side is 100 ft.;

solve the triangle.

69. From a station on level ground due south of a hill, the angle of eleva-

tion of the top is 15°; from a point 2000 ft. east of this station the angle of

elevation is 12°; how high is the hill ?

70. The angle of elevation of the top of a building 100 ft. high is 60°; what

will be the angle at double the distance ? .

71. A flag-pole on a building subtends an angle of 7° 40' at a point on the

ground 500 ft. from the building; on approaching 100 ft., the pole subtends

an angle of 7° 50' ; find the height of the pole and the building.

72. On level ground, 250 ft. from the foot of a building, the angles of ele-

vation of the top and bottom of a flag-pole surmounting the building are

38° 43' and 31° 2' respectively; find the height of the building and the pole.

73. From level ground the angle of elevation of the top of a hill is 11° 30';

after approaching 3000 ft. up an incline of 3° 27', the angle of elevation of the

top is 21° 32'; how high is the hill ?

74. From a level plain, the angle of elevation of a distant mountain top

is 5° 50'; after approaching 4 miles, the angle is 8° 40'; how high is the moun-

tain ?
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75. From a point GO ft. above sea level the angle between a distant ship

and the sea horizon (the offing) is 20'; how far away is the ship ? [Consider

the surface of the sea as a plane, and the distance to the horizon 10 miles.

See (226) ex. (4).]

76. From a point on level ground the angle of elevation of the top of a hill

is 14° 12'; on approaching 1000 ft., the angle is 17° 50'; how high is the hill ?

77. A building surmounted by a flag-pole 20 ft. high stands on level ground.

From a point on the ground the angles of elevation of the top and the bottom
of the pole are 53° 5' and 45° 11' respectively. How high is the building ?

78. On approaching 1 mile toward a hill, the angle of elevation of its top

is doubled; on approaching another mile, the angle is again doubled; how high

is the hill ?

79. A and B are two points neither of which is visible from the other. To
determine the distance AB, two stations C and D are chosen and the following

measurements made: CD=500ft.; ZACD = 30°25' 15"; Z ACB= S5° iO' 20";

Z BDC = 35° 14' 50"; Z BDA = 80° 20' 25"; find AB.

80. In a chain of three non-overlapping triangles, the following data are

known

:

AB = 1000 ft.

A ABC, AACD, ZCDE,
Z A = 44° 36', Z A = 56° 32', Z C = 55° 30',

ZC =40° 0'; ZC =50°20'; Z.& = 77°02';

Calculate DE. (Express DE in terms of AB and the necessary angles by
the law of sines.)

81. In a chain of four non-overlapping triangles, the following data are

known:
AB = 11289 meters.

A ABC, ACBD, ADBE, ADEF,
Z A = 58° 10' 35", Z B = 86° 50' 0", Z D = 79° 12' 8", Z D = 50° 41' 5",

Z 5 = 69° 55' 0"; Z C == 46° 48' 0"; Z fi = 73° 29' 10"; Z ^ = 45° 20' 40";

calculate EF.

82. In a chain of five consecutive triangles, each having a side in common
with the preceding, as ABC, CBD, BDE, DEF, EFG, express FG in terms
of AB and the necessary angles.

83. A tower 50 ft. high stands on the edge of a cliff 150 ft. high. At what
distance from the foot of the cliff will the tower subtend an angle of 5° ?

84. The sides of a triangle are 100, 150, 200 ft. At the vertex of the

smallest angle a line 100 ft. long is drawn perpendicular to the plane of

the triangle. Find the angles subtended at the farther end of this line by
the sides of the triangle.

85. A right triangle whose perimeter i.s 100 ft. rests with its hypotenuse
on a plane, the vertex of the right angle being 10 ft. from the plane. The
angle between the plane of the triangle and the supporting plane is 30°. Find

the sides of the triangle.
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86. An equilateral triangle 50 ft. on a side rests with one side on a plane

with which its plane makes an angle of 60°. How far is the third vertex

from the plane ?

87. As in exercise 86, if the triangle, instead of being equilateral, has sides

40, 20, 30 ft. and rests on the shortest side. Ans. —^

88. The sides of a triangle are as 1 : 2 : 3, and the longest median is 10 ft.

Find the sides and angles.

89. The following measurements of a field ABCD are made: A to B, due

north, 10 chains; B to C, N 30° E, 6 chains; C to D, due cast, 8 chains; cal-

culate AD, and the area of the field in acres. (1 chain = 4 rods.)

90. The following measurements of a field ABODE are made: A to B, due

east, 25.52 chains; J5 to C, E 40° 26' N, 22.25 chains; C to A N 48° 26' W,

33.75 chains; DioE,W 31° 15' S, 18.32 chains; calculate EA and the area of

the field in acres.

91. In the field of exercise 89 how much area is cut off by a line due east

through B ?

92. In the field of exercise 90 where should an east and west line be drawn

so as to bisect the area ?

93. In the field of exercise 90 where should a north and south line be

drawn to cut off 30 acres from the western part of the area ?

94. If P be the pull required to move a weight Tf up a plane inclined to

the horizontal at an angle i, and m the coefficient of friction, then

p _ TT7 sin i + M cos i

cos i — M sin i

Calculate P when W = 1000 lbs., i = 30°, /x = 0.1.

95. In exercise 94, what is i if P = J T7 and ^ = 0.1 ?

96. If I be the length of a plane inclined to the horizontal at an angle i,

fi the coefficient of friction and g the acceleration due to gravity (32.+ ft.

per sec. per sec.) the time in seconds required by a body to slide down the

plane is / ^-^

y g (sin i — m cos i)

What is T when I = 25 ft., i = 20°, m = 0.1 ?

97. In exercise 96, find i when I = 100 ft., m =0.1, T=5 sec.

W / 98. When light passes from a rarer to a denser medium, the

index of refraction m is determined by the equation

__ • _ sin i

:-~ '^ ~
sin r

^-l^l--"" When M = 1-2, what must be i (angle of incidence) to give a
"''

deflection of 10° ?

99. Find the total deflection of a ray which passes through a wedge whose

angle is 30° and index of refraction 1.4, if the ray enters the wedge so that the

angle of incidence is 25°, and moves in a plane ± to the edge of the wedge.
_

100. Solve exercise 99 when the angle of the wedge is a, the angle of mci-

dence i, and the index of refraction m.



CHAPTER XI

The Progressions. Interest and Annuities

180. Arithmetic Progressions.— Let a,h,c, . . . , k, I be quan-

tities such that the difference between any one of them and the

preceding one is constant. Then the quantities are said to form

an arithmetic progression. (We shall abbreviate this into A. P.)

The quantities a, h, c . . . ,k, I are called the terms of the pro-

gression, a and I the extremes, and h, c, . . . ,k the means. The
constant difference between consecutive terms is called the

common difference.

Let a denote the first term,

I denote the last term,

d denote the common difference,

n denote the number of terms,

S denote the sum of the terms of any A. P. Then
the second term is a ^ d,

the third term is a -f 2 d,

the last or nth term is a -\-{n — 1) d; that is,

(1) I = a+ {n - 1) d.

Also

S = a+(a + f/) + (a + 2d)+ • • • +(a + n - If/);

S = l +{l -d)-\-(l -2f/)+ •••+(/ -7T=n[f/).

Adding,

2.S=(a + + (a + 0+ • • • +(« + /)= n(a + 0.

Hence

(2) S = r^{a + l).

Putting for I its value from (1),

161
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We shall refer to the five quantities a, I, d, n, S, as the elements

of the A. P. When any three elements are given, the other two

may be found by use of the preceding formulas.

181. Problem. To insert m arithmetic means between two given

quantities, a and I.

Since there are 2 extremes and m means, the total number of

terms is m + 2. Hence if d be the common difference,

l = a-\-{m-\-2- l)d;

hence

J I — a

Then the required means are

a + rf, a + 2d, . . . , a + md.

When w = 1 we have only a single mean, called the arithmetic

mean. It equals ^ (a + 0.

182. Examples.

1. Find the sum of all the integers from 1 to 100 inclusive,

Here 5 = 1+2+3+ • • • + 100.

Then a = 1, Z = 100, n = 100,

and S = ^ (a + =
I
X 100 (1 + 100) = 5050.

2. How many terms of the progression 3, 0, - 3, . . . are required to

make the sum equal — 27.

Here a = 3, d = - 3, S = - 27; to find n.

From (2'), -27 = n U -""^ X3^, or n2 - 3 n - 18 = 0.

Hence « = 6 or - 3.

Since n must be positive we discard the second value.

3. Find four numbers in A.P., such that the sum of the first and last shall

be 12 and the product of the middle two 32.

Let the numbers he a — 3 d, a — d, a + d, and a + 3 d, with a common

difference 2 d.

Then a-2d+a + 3d = 12

and ^
(a-d)ia+d) = 32.

Hence a = 6 and d = ± 2.

Therefore the numbers are

0, 4, 8, 12, or 12, 8, 4, 0.
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183. Exercises. Find the last term and the sum of each of the

following arithmetic progressions:

1. 7, 11, 15, . . . , to 13 terms; 5. 63, 58, 53, . . . , to 8 terms;

2. 5,8,11. . . . ,
to 12 terms;

g^ x,x+2y,x+ i y, . . . , tolOterms;
3. 2, 2i, 3, . . . , to 25 terms;

4. 1,1.1,1.2,.. . . ,to200terms;
'^' V,V-hq,V-q,. .., to 20 terms.

Find the other elements of the A. P., given that

:

8. a = 10, n = 14, S = 1050; 16. n = 35, S = 2485, d = 3;

9. a = 3, n = 50, S = 3825; 17. n = 50, >S = 425, d = h

10. a = - 45, n = 31, 'S = 0; 18. n = 33, S = - 33, ri = - f;

11. Z = 21, n = 7, S = 105; 19. S = 624, a = 9, rZ = 4;

12. / = 49, n = 19, 5 = 503J; 20. S = 2877, a = 7, d = 3;

13. Z = 148, n =27, S = 2241; 21. S = 623, d = 5, I = 77;

14. Z =-143,n = 33, S=-2079; 22. S = 682.5, rf = 1.5, Z = 45;

15. n= 21, S = 1197, d = 4; 23. S = 95172, d = - 7, Z = 567.

24. Find the sum of the first 100 odd numbers.

25. Find the sum of the first 50 multiples of 7.

26. A body starting from rest falls 16 ft. during the first second, and in

every other second 32 ft. more than during the preceding. How far does the

body fall in 12 seconds; how far during the 12th second ?

27. According to the rate of fall in exercise 26, how long will the body take

to fall 1600 ft ?

28. A body which is projected vertically upward loses 32 ft. of its initial

velocity each second. If the velocity of projection is 320 ft. per second, how
high will the body rise ?

29. If 100 apples are laid in a straight- line, 3 feet apart, how far must a

person walk to carry them one at a time to a basket standing beside the first

apple ?

184. Geometric Progressions.— If the numbers a, b, c, . . .
,

k, I are such that the ratio of any number to the preceding number

is constant, the numbers form a geometric progression. (We
abbreviate by writing G. P.)

The expressions "terms," ''means," "extremes," are used here as

in the case of A. P. The constant ratio of any term to the preced-

ing is called the ratio of the geometric progression.

If a, I, n, and S have the same meaning as in the case of the

A. P., and if r denote the ratio of the G. P., the first n terms are,

a, ar, ar^, ar^, . . . , ar''-'^.
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Hence

(1) 1 = ar''-^.

Also S = a -{- ar -{- ar^ -\- • • • -\-ar"'-'^

and rS = ar -{- ar- -{- • • • + ar" - ^ -|- ar"*.

Therefore rS — S = ar" — a,

or (r-l)S= (r" - 1) a.

Hence
y"— 1 1 — *"'

(2) S = a- - = a-

Substituting from (1) in (2) we have

(20 s = ':^.

When any three of the five elements are given, the other two

may be obtained by use of two of the preceding formulas. In

some cases this involves the solution of an equation of nth degree

or of an exponential equation,

185. Problem. To insert m geometric means between two given

numbers a and I.

The total number of terms being m + 2, we have, if r denote the

ratio,
m+in

I = ar'^ + s-^ or r = V -.

a

The required geometric means are then

ar, ar^, . . . , ar^.

When m =^ 1, the resulting single mean between a and I is

y/al. The square root of the product of two quantities is called

their geometric mean.

186. Examples.

1. Find the sum of the first 10 terms of the G. P. 2, 22, 23, . . . .

210 — 1
Here a = 2, r = 2, w = 10; hence S =2 = 2046.

2. How many terms of the G. P. 1, 2, 4, . . . are required to make the

sum 63 ?

Here a = 1, r = 2, -S = 63; to find n.

From S = a
^" ~} we have 63 = ^!!

~
] ; or, 64 = 2«.

Hence n = 6.
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3. Four numbers are in geometric progression. The sum of the first and

last is 18, the product of the second and third 32. Find the numbers.

Let the numbers be a, ar, ar~ and ar^.

Then
(1) a+ar3 = 18; (2) 02,-3 = 32.

Multiply (1) by a and in the result replace a?r^ by 32.

Then a^ + 32 = 18 a; hence a = 16 or 2.

Substituting the values of a in (2) we find r = ! or 2. Hence the numbers are

16, 8, 4, 2; or 2, 4, 8, 16.

(We disregard the imaginary values of r.)

187. Exercises. Find the last term and the sum of the terms

of the following geometric progressions:

1. 4,8,16, . . . , to 7 terms. 4. 9, 3, 1, . . . , to 11 terms.

2. 2,6,18, . . . , to 9 terms. 6. 1, ',, i',, . . . , to 10 terms.

3. 1, 4, 16, . . . , to 7 terms. 6. 8, 2, f , to 20 terms.

7. a, a (1 + x), a (1 + xY, ... to 8 terms.

8. rrfi,mn,m.-hi^, . . . , to 9 terms.

9. Insert 3 geometric means between 8 and 10368.

10. Insert 5 geometric means between 2 and 31250.

11. Insert 5 geometric means between 36 and /j.

12. Insert 6 geometric means between 3 and 49152.

13. Insert 4 geometric means between 48 and o\-

14. Insert 5 geometric means between 81 and V/-

Calculate the unknown elements, given

:

15. Z = 128, r = 2, n = 7. 22. a = \, Z =2401, S = 2801.

16. Z =78125, r = 5, n = 8. 23. a = 10, I = h, 5 = 191-^.

17. l=i^, r = \, n = 5. 24. a = 3125, I =b, 5 = 3905.

18. a=9, ^ = 2304, r = 2. 25. a = 3, r =3, 5 = 29523.

19. 0=2, Z = 64, r = 2 26. a=8, r =2, 5 = 4088.

20. rt = 3, / = 192V2, r=V2. 27. r = 2, n = 7, 5 = 635.

21. 0=2, Z = 1458, 5 = 2186. 28. Z = 1296, r =6, 5 = 1555.

188. Infinite Geometric Progressions.— Consider a line segment

AB of unit length, and bisect it at Ai, then bisect Ai5 at A-z, A2B

at .4.3 and so on (figure).

The points of bisection A,, A., ^3, • • •

^ ^ ^'' '^^ ^^^
continually approach B and the sum of -- -

-

the segments AA\ 4-^1^12 + MA?, + • • • approaches AB or 1.

But the sum of these segments is represented numericallj^ by the

series

^ + i + §+' • •' ^^ 2 + 2^ + 23+' •
•'
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and hence by taking n large enough we can make the sum

^ =14-1-4-14- . . . -^1^n 2 ^ 22 "^ 23
"•" "^ 2"

differ from 1 by as little as we please. Hence we take

2 + 4 + 8+ toii^finity = 1.

The sum Sn above is a geometric progression with r = I and

a = |. Its sum to n terms is therefore

1 (hr - 1

As n increases, {\Y approaches 0, and Sn approaches the value

- y = 1, as found above.
2 2 — 1

A geometric progression in which the number of terms increases

without limit is called an infinite geometric progression.

For the sum of n terms of any G. P. we have

r'^ - \ 1 - r"

If now r < 1, then r'^ approaches when n approaches oo, and the

formula for the sum of an infinite G. P. is

S = _ > provided
|
r

|
< 1.

(When r = 1, or when r > 1, -S is infinite.)

Exam-pie. A ball is thrown vertically upward to a height of 60 ft. On

striking the ground it always rebounds to one-third the height from which

it fell. How far will it travel ?

The distance covered during the first rise and fall is 120 ft., during the sec-

ond rise and fall, h X 120 ft., during the third, ^^ X 120 ft., and so on indefi-

nitely. We have an infinite G. P., with a = 120 and r = J. Hence the total

distance will be

S = j^ = 180 ft.

189. Exercises. Sum the following infinite geometric progres-

sions:

1. 8, 2, *, . . . . 3. 5, 3, § 5. 1, -h, +i -i, ....

2. \,\,-h, .... 4. 2,?, A, ... . 6. 3, -1, i -I, . . . .



190, 191 ] THE PROGRESSIONS 167

7. If in the example worked above the ball requires 4 seconds for the first

rise and fall, and half as much time for any subsequent rise and fall as for the

preceding, how long before the ball will come to rest ?

8. How far has the ball in the above example traveled at the 10th rebound ?

190. Harmonic Progressions.— If the numbers a,b, c, . . . , k,

I are such that their reciprocals form an arithmetic progression,

they are said to be in harmonic progression (abbreviated to H. P.).

Problems relating to harmonic progressions are solved by reduc-

tion to A. P.

If a, b, c form a H. P., then b is called the harmonic mean between

a and c. Let the student show that we then have

, 2 ac
b = —,

—

191. Exercises.

1. In an A. P. the sum of the 9th and 12th terms is 40; the difference

between the squares of the 15th and 11th terms is 400. Find a and d.

2. In an A. P. of 10 terms, the sum of the terms is 65 and the sum of their

squares 1 165. Find a and d.

3. In an A. P. of 20 terms, the sum of the 3rd and 12th terms is 30, the

product of the two middle terms is 725. Find a and d.

4. In an A. P. of 14 terms, the product of the first and the last is 276 and
the product of the middle two is 1326. Find a and d.

5. Find four numbers in A. P. such that their product is 840 and their

sum 11.

6. Find four numbers in A. P. such that their product is h and the sum of

their squares is k.

7. Find five numbers in A. P. such that their product is a, their sum 5 6.

8. The sides of a triangle form an A. P. with a common difference 2. Find
the cosine of the largest angle, if the longest side is twice the shortest.

9. Find the angles of a triangle if they form an A. P. with d = 5°.

10. Between every pair of consecutive terms of the G. P. 1, 2, 4, 8, . . .

insert a new term so that the result is again a G. P.

11. As in exercise 10 for the G. P. a, ar, nr^, ....
12. In a G. P. of 10 terms, the sum of the even terms is 30 and of the odd

terms 60. Find a and r.

13. Find four numbers in G. P. such that the product of the first and last

is 400 and the quotient of the middle two is 14.

14. Find three numbers in G. P. such that their sum is h, the sum of their

squares k.

15. If a tree, now 4 inches in diameter, increases its diameter 5% each
year, how thick will it be in 20 years ?

16. A seed yields a plant from which 4 new seeds are obtained. How many
seeds are available from the 10th generation of plants ?
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17. An Indian potentate offered to reward the inventor of the game of chess

as follows : one grain of wheat for the first square on the chessboard, 2 for the

second, 4 for the third, and so on, doubling each time for the 64 squares. What
would be the cash value of this reward, with wheat at $1.00 a bushel, allow-

ing a million grains to the bushel ?

18. A right triangle has a hypotenuse 2 ft., angle 30°. From the vertex

of the right angle a _L is dropped on the hypotenuse, forming a new right

triangle which is treated similarly, and so on indefinitely. Find the sum of

all the Js so obtainable.

19. The altitude of an equilateral triangle is a. A circle is inscribed in it,

and in this circle a new equilateral triangle. The operation is repeated on the

new triangle, and so on indefinitely. Find the sum of the altitudes and of

the perimeters of all triangles so obtainable.

20. Find the sum of the perimeters and of the areas of all the circles in

exercise 19.

Interest and Annuities. — This subject affords a simple and use-

ful application of the theory of progressions.

192. Interest. — Let P denote a sum of money loaned, or

principal, and r the yearly rate of interest expressed in fractions

of a dollar. Then the amount of P dollars in one year is

A, =P(l+r).

If principal plus interest for one year is allowed to run a second

year, the amount at the end of the second year is

A2 = Ai(l-\-r)=P(l+rr,
and so on.

Hence ii Anhe the amount of P dollars in n years, interest at

rate r compounded annually, we have

(1) A,, = P(l-\-rr.

If interest is compounded every t years instead of annually, then,

after n compoundings, the amount is

(!')
_

^„ = P (1 -f rty\

Thus if we want the amount of $100 at the end of 2 years, inter-

est 4 per cent compounded quarterly, we have,

P = $100; r = t!o; t = \; n = 8.

Then An = 100 (1 -f .04 X i)^ = $100 (1.01)^ = $108.25.
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193. Annuities. — An annuity is a sum of money payable yearly,

or at other stated periods.

Let A be the amount of each payment, r the yearly rate of

interest, n the number of payments to be made.

Assuming the first payment now due, and that each payment is

put at interest, compounded annually, what is the total amount
accrued when the last payment has been made?

The first payment is at interest n — 1 years, its amount
A (1 -{- r)"-i; the second n — 2 years, its amount ^ (1 + r)"-^;

and so on, to the payment next before the last, which is at inter-

est one year, its amount A {1 -\- r); the last payment amounts

to A. The total amount S is therefore

AS = A+A(14-*-)+A(l+r)2+ • • • +^(i-f-,.)n-i^ or

(2^ ^-^^ 1 + ..-1
-^—;

Present Worth.— How much cash in hand, placed at interest

compounded annually, will amount to the sum S just obtained

when the last payment is made, that is, in ?i — 1 years?

Let Q be the amount required, called the present worth of the

annuity.

Let Qi be the sum which with interest will yield in n — 1 years

the amount of the first payment, or A (1 + r)"-^ Then

Qi(l+r)«-i =^(l+r)"-i or Q^ = A.

Let Q2 be the sum which with interest for w — 1 years will yield

the amount of the second payment, or A (1 -f r)"-^. Then

Q2(l+r)"-i =^(l+r)"-2 or Q2 = ^
1+r

Similarly if Qs, Q4, . . . Qn be the present worths of' the 3rd,

4th, . . . last payments of the annuity we have,

Hence
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The sum in the parentheses is a G. P. with ratio
^

• Apply-

ing the formula and reducing,

(1 + rY - 1
(3) Q

194. Exercises.

1. Find the amount of $1412 in 19 years at 4%, interest compounded

annually.

2. Find the present worth of an annuity of $100, there being 20 annual

payments of which the first is now due.

3. Find the amount of $1000 in 10 years at 4%, interest compounded

quarterly.

4. Find the amount of $1000 in 20 years at 4%, interest compounded

semi-annually.

5. In how many years will a sum of money double itself at 5% simple

interest ?

6. In how many years will a sum of money double itself at 5%, interest

compounded annually ?

7. An annuity of $100 is to begin in 10 years from date and to run 10

years. Find its present worth if money brings 5% compound interest.

8. Find the present worth of a perpetual annuity of ^1 dollars, compound

interest r%, the first payment now due. (Q = Qi + Q2 + Qs + • • • ad inf.).

9. As in exercise S, except that the first payment falls due in m years.



CHAPTER XII

Infinite Series

195. Limit of a Variable Quantity. — When a variable quantity

changes in such a way that it approaches a fixed numerical value, so

that the difference between the variable and the fixed quantity becomes

and remains less than any assignable magnitude, however small, then

the fixed quantity is called the limit of the variable.

For example, as x varies the variable quantity 1 -{- x can be

made to differ from 1 by less than any small quantity e, by simply

taking
|
a:

|
< e, and the nearer x is to 0, the nearer will 1 -f a; be

to 1. Hence, as x approaches 0, the limit of 1 -\- x is 1. As an

equation this is expressed by

lim (1 -|- a;) = 1. (= is read "approaches.")
1 =

Exercise . Show that

:

(a) Hm^ = 1 ; (6) Hm (l + J)
= 2; (c) lim log (1 + a:) = 0;

(rf) lim fl - ^V 0; (e)lime"=l; (/) lim fl + -Y = 1.
n = 10\ n/ x^O n = oo\ 11/

196. Infinite Series. — A sequence or succession of terms, ui, U2,

Us, . . . , iin, . . . , unlimited in number, is called an infinite series.

The sum of the first n terms of a sequence we denote by 5„.

Then
Sn = Ui + U2 + U3 -\- • • • + Un.

As n increases and we form the sum of more and more terms of

the sequence, one of three alternatives is open to 5„, namely:

(a) Sn approaches a fixed limit S, which is then called the sum
of the infinite series, and the series is said to converge.

(b) Sn increases without limit; the infinite series then has no
sum and is said to diverge.

(c) Sn oscillates; the infinite series has no sum but oscillates,

and is again said to diverge.

171
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Examples.

(a)
2

"^ 22 "^ 23 "^ ' ' "^ 2"
"*"

'

1.1, .11 i^r - 1 g. (188.^^n
2

"^ 22 "^ "^
2'' 2 i - 1

lim *S„ = 1 = >S. The series converges to the value 1,
71 — 00

or, ^ + ^2+ • • • +^+ •••=!. [(188), figure.]

(b) l + 2 + 3+---+n+.-..

*S„ =1 + 2 + 3+ • • • -\-n; then obviously Sn increases with-

out limit as more and more terms are added. Hence the given

series has no sum, and diverges.

(c) 1 - I + 1 - 1 + • • • •.

Here Si = 1; >S2 = 1 - 1 = 0; ^Ss = 1 - 1 + 1 = 1; >S4 = 0; and

so on indefinitely. Sn oscillates from to 1 as n varies, the series

is oscillatory and has no sum. We say that it diverges.

197. To show that an infinite series converges, it must be shown

that Sn, the sum of its first n terms, approaches a definite limit as n

increases indefinitely. When such limit does not exist, the series is

divergent.

The direct method of determining whether a given series con-

verges or diverges is to form the sum of its first n terms *S„, and let

h increase indefinitely. This method is applicable only in the

few cases where a formula for Sn is available. The standard case

is that of the infinite geometric progression,

a -{- ar -\- ar^ + • • • + ar"'-^ + • • •

1— r'*

Here *S„ = a + ar + ar~ + • • • -\- ar"^-^ = a
1-r

When r is numerically less than 1, i.e., \r\ < 1, then r" approaches

as n increases and

lim Sn = a _ = S.
n = oo -i r

When r = 1,

Sn = a -\- a + • • ' -\- a = na.
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Hence Sn increases without limit when n increases. When

I

r
I

> 1, r" increases indefinitely with n; hence S^ does the same.

Therefore, the geometric series, a -\r ar -{- «/'+ • • • > converges when
\r\ < 1, and diverges when \r\ =1.
Putting a = 1 , we see that the smpZe pother series, I+cc+cc^tI- • • •

^

converges when \oc\ < 1 and diverges when
|

a?
|

= 1

.

198. We next consider indirect methods for establishing the

convergence or divergence of a given infinite series.

Theorem 1. When an infinite series converges, its nth term ap-

proaches zero as a limit when n increases.

Proof. Let the convergent series be W1+W2+ Ms+ • • • +Wu+ • • •

.

Then Sn = ui-{-U2-\- • • • +m„ and Sn-i = ui-^U2-\- • • • +Wn-i.

Hence Un = Sn — Sn-i-

By taking n large enough, both *S„ and Sn-i can be made to

differ from the sum of the series and hence from each other by

as little as we please; hence their difference, w„, can be made to

differ from zero by less than any assignable small quantity.

lim Un = 0.
n = oo

This is a necessary condition for the convergence of any series.

Test for Divergence.— From Theorem 1 we infer that an infinite

series diverges whenever lim iin 9^ 0.
n = oo

199. Alternating Series.— A series whose terms are alternately

+ and — is called an alternating series.

Theorem 2. An alternating series converges provided that (a)

each term is numerically less than the preceding, and (b) the linvit

of the nth term is zero as n increases indefinitely.

Proof. Let the series be

Wi — M2 + Ms — M4 + W5 — Me + • • • .

Write this in the two forms,

(mi - M2) + {Uz - U4) + (M5 - Uq) + • • •
;

Ml - (M2 - M3) - (M4 - Ms) - • • • .

Each set of parentheses incloses a positive quantity according to

condition (a) of the theorem; hence assuming that mi, U2, M3, . . .

are themselves positive quantities, the first form shows that the



174 INFINITE SERIES [200,201

sum of the series is positive, i.e., > 0, and the second that the

sum is less than the first term wi. Also, since hm w„ = 0, the sum
n = 00

cannot oscillate. Hence the series converges to a value between

and its first term.

Exam-pie. The alternating series,

l-h + \-\+ ' •
•

converges to a value between and 1.

200. Absolute Convergence.— A series is said to converge abso-

lutely when it remains convergent if all its terms are taken positively.

Thus if wi, M2, W3, • • • be in part negative and in part positive,

the series

Wi + W2 + W3 + • • •

converges absolutely provided that the series

I

Wi 1+
I

W2
I
+

I

W3
I
+ • • •

converges.

Exercise. Show that the series

\ \- X
-\-

x"^ -{- • • • and a -\- ax -^ ax^ + - • •

both converge absolutely when \x\ < 1.

201. The Comparison Test.

Let wi + W2 + W3 + • • •

be a series known to converge absolutely or to diverge.

. Let vi -\- V2 -\- v^ -{- • •

be a series to be tested for convergence or divergence. Then,

(a) If the u-series converges absolutely and, for all values of n, v^ is

numerically less than Un, the v-series also converges absolutely;

(b) If the u-series diverges and Vn is numerically greater than Un,

and if all the terms of the v-series have the same sign, the v-series also

diverges.

Proof.

Let r/n =
I
Wl

I
+

I

W2
I
+

I

W3
I
+ • • • + \Un\

and Vr,= \vx\ + \v2\ + \vz\+ • • • +|t'„|.

Then by condition (a), Un approaches a limit, say C/, as n = oo

,

and also, 7„ < f/„. Hence, since F„ must increase steadily with



standard Test Series.
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Examples.

1. The series 1+22 + 33+' +^+''' converges; for it is less,

term for term, than (3).

2. The series 1 +^ ?,
+-, ^ + • • • + , „ ^ + . . . diverges; for

logio2 logio3 logion

it is greater, term for term, than (4).

202. The Ratio Test.— The series Wl+M2+^*3+ • • +Mra+ • •
•

converges absolutely if, beginning at some point in the series, the

ratio Uji -r- Un-i becomes and remains numerically less than a fixed

positive number which is itself less than 1.

Proof. Assume that

^^ < r < 1 for all values of n > iV,
\Un-l

I

A^ being a fixed positive integer.

Then |
m„

|
< r\ Un-\

\

when n> N.

Hence putting n = A^ + 1, A^ + 2, . . . , we have

\uN+i\<r\uN\;

I

un+2 \
< r\ un+1

I
< r^\uN\;

\uN+3\ < r\uN+2\ <r^\uN\;

Adding, we have

I

UN+l
I
+ I

UN + 2 \-\-UN+3\-\- • <
I

WiV |(r + r2 + r3 + . . .).

Writing the given series in two parts,

(Wl + W2 + • • • + Wiv) + (UN + 1 + Un + 2 + Un + 3 +•••),

we see that the first part, formed of N terms where A^ is a fixed

finite integer, must have a finite sum. The second part cannot

exceed the left member of the last inequality above, hence is less

than the right member of that inequality. But the series r -{- r- -{-

7-3 _|_ . . . converges and has a finite sum, since it is a G. P. with

ratio r < 1. Hence the sum in the second pair of parentheses has

a finite limit, and the given series converges.

Similarly it can be shown that the series diverges when the test-

ratio Un^ Un-i becomes and remains greater than 1, or even

when it approaches 1 from the upper side.
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When the test-ratio w„ -i- w„_i is at first less than 1, but

approaches 1 as n increases, this method gives no information

about the series.

Examples.

^•^+r^+TT^+--+ 1.2-3'....n
+----

I tf
I 1

Here —— = - , which approaches as Ji = go . Hence the ratio test
\Un-l\ n'

is satisfied and the series converges.

2. sin X + 2 sin2 x + 3 sin^ x + • • • + n sin" x + • • •

I

'un
I
_

I

n sin" x '

I
Wn -1 I \

(n — l) sin"- 1 x

As n = oo, =1, and if we choose x different from an odd multiple of
n — I

^, so that
I

sin X
I

< 1, we can take n so large that the test-ratio will be

less than r, where r is less than 1. We need only take x < sin-i r—
Ji

Hence the series converges for any value of x which is not a multiple of ^ •

3.
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9 J-+A_ . J_+. . .

l-2^2-3^3-4^
10.* \lx+\2x'i + \3x'+---+\nx^+---*

11. H-X +
I+I+---.

^2-
^-IS + IS-JT+'-'-

^. -. 1 ,1-3 1-3.5,, 1.3-5-7,
1*- l-2^+2T4^-2-Tr:6^ + 2.4.6.8^ '

15. Z - i l2 + 4 X3 - 1 X-l + • • • .

* [n = 1 . 2 . 3 • • • • »!•



CHAPTER XIII

Functions. Derivatives. Maclaurin's Series

204. Functions. — Let x denote a variable quantity and y a

quantity whose value depends on that of x. Then y is said to be

a function of x. Thus

y = X- -{-1, y = a^, y = sin {ax -\- h)

are all functions of x.

As an equation, we indicate that y is a function of x by writing

y = f(x).

When a body is dropped from rest, the space s (ft.) fallen

through in the time t (seconds) is s = | gf. Here s is a function

of t, or

s=fit); f(t)^hgt'-

When a train is running at 30 miles an hour, the space s (miles)

covered in the time t (hours) is s = 30 t. Hence

s=f(t); f(t)=^Qt.

When the relation between y and x is given by an equation of

the form y = f(x), y is called an explicit function of x.

Suppose the relation between x and y to be given in the form,

a;2 + ?/ = !.

Here y is not given directly in terms of x, but nevertheless the

value of y depends on that of x; for when we substitute for x first

one value and then another we get in general different values of y

on solving the equation. In such case y is called an implicit

function of x.

As other examples, we have

1/2 = 4 x" sin (x -\- y)= 1; a"" -{- a'-' = b.

205. Variation of Functions. — Consider the relation y = x^.

When x = a, then y = a-; when x = a -\- h, y ={,a-\- h)~.

179
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As X changes from a to a -{- h, y changes from a^ to (a + h)-.

The total change in x is h, and the corresponding change in y is

(a + hy - a2 or 2 ah + h^.

Let us designate a change in x by Aa; (read " increment of x,"

or "delta x") so that in this example Ax = h; let the corre-

sponding change in y be Ay, so that we have in this case

Ay = 2ah-\-h^ = 2aAx + Ax^.

In general, if y = f (x), then to the values x and a: + Aa; of the

variable x correspond the values / (x) and f{x-{- Ax)* of y. Hence

the change in y, corresponding to the change Ax in x, is

Ay=f{x-\-Ax)-f{x).

Continuous Function.— When Ay = with Ax, y is called a

continuous function of x. We assume all our functions to be

continuous unless the contrary is stated.

Exercises.

1. Given y = x^. Calculate Ay^ when a; = 2 and Ax = 0.1.

2. As in exercise 1, when y = 's/x.

3. As in exercise 1, when y = x^.

4. As in exercise 1, when y = 10-^.

5. Given y = sin x. Calculate Ay, when x - 45° and Ax = 5°.

6. As in 5, when x = 30° and Ax = 1°.

7. As in 5, when x = \ and Ax = 0.01.

206. Difference Quotient.— The fraction

change in y Av

change in ..c Ax

is called the difference quotient of y relative to x.

Thus, if y = x-, then Ay ={x + Ax)^ - x^ = 2xAx-\- Ax^.

Hence the difference quotient is

Ay^2xA^^fA^^2x + Aa:.
A.T Ax

We shall abbreviate Difference Quotient by writing D. Q.

Exercises. Calculate the D.Q. in the exercises of (205).

* / (x 4- Ax) stands for the result obtained by replacing x by x + Ax in /(x).
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207. The D.Q., -r^, geometrically.— Lot the curve in tlie fig-

y
ure represent a part of the graph of the

equation y = f{x).

Let P be a point on the curve hav-

ing coordinates (x = OM, ij = MP),

and P' a second point {x -{- Ax = OM',

y-{-Aij = M'P').

Let the secant PP' make an angle 6' with the rc-axis.

Draw PQ II
OX. Then from A PQP',

tan^' = ^.
Ax

Slope. — The tangent of the angle which a line makes with the

rc-axis is called the slope of the line.

Hence, the difference quotient, -v-;, is the slope of the secant drawn

through the points (or, y) and (x + Ax, y + Ay).

208. Limit of D. Q. = Slope of Tangent. — Let the point P'

move back along the curve and approach the point P. Then Ax,

and in general also Ay, approach 0.

i

Suppose now that as Ax approaches the D. Q. approaches a

definite limit, m.

Then the line through the point {x, y) having the slope m is

called the tangent to the curve y = f{x), {x, y) being the point of

contact.

In the figure, as P' approaches P, the secant line PP' gradually

rotates about P and approaches a limiting position PT, which is

defined to be the tangent to the curve at P.

If d be the angle which the tangent to the curve at P = {x, y)

makes with the x-axis, then

^ X (read, ''tangent of 6 equals the

tan e =^ljm|^j
jj^^ ^^

A|
^^ ^^ approaches 0."

When — approaches a definite limit a tangent is thereby deter-
Ax ^^

mined. When such limit is indeterminate, the tangent does not

exist, or several tangents may be drawn at P. We shall consider

only cases where a single determinate tangent exists.
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y = X-

tanO = 2x

209. Examples.

1. y = X-.

y + Ay={x + Aa;)2

= x2 + 2 a; Ax + A?.

Ay = 2x Ax + A?

and ^ =2x+Ax.
Ax

Hence lim — = 2 x = tan 9.

Ax^O ^^

Here the slope of the tangent at any point

equals twice the abscissa.

2. y = ^\xK

y + Ay = 2V (x + Ax)3

= 2V (x' + 3 x2 Ax + 3 X A? + Ai^).

Ay = ii (3 x2 Ax + 3 X Ax2 + Ax^)

'and ^ = ^V(32:2 + 3xAx+ Ax^).
Ax

rt

Hence lim v^ = na;2 = tan 0.
y = 5V a;3

tan e = 1x2

and

3. 2/ =x2 -2x.

y + A?/ = (x + Ax)2 - 2 (x + Ax)

=x2+2xAx+Ax^-2x-2Ax

=x2-2x+ (2x-2)Ax +Ax^.

Ay = (2 X - 2) Ax + A?
Ay = (2x-2)4-Ax.

Ay

y = x2 — 2 X

ton = 2 X - 2

lim —^ =2x -2 = tan».
Az^oAx

4. y2 = X. Here y is an implicit func-

tion of X. Solving, we have

y = ±'s/x.

The upper sign gives that part of the curve lying above the x-axis, the

lower sign the part below the axis. We consider first the upper sign only.
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Then

y = V-c and y + Ay = Vx + Ax.

A(/ = \Jx + Ax - V-C-

Multiplying and dividing by

Ay

V-c + Ax+ Ax, we get

(Vx+ Ax - Vx) (Vx+ Ax+ Vx)

\Jx + Ax + '^x

Ax

ton fl = ±

Vx + Ax + Vx

Hence ^ =-=L ^,
Ax V^ + Ax + V^

lim --^ = ~ = tan 9.

Ax-^oAx^ 2VaJ

For the lower part of the curve, replace Vx by -sjx.

5. x2 + y2 = 100.

Solving for y, we get

2Va; and

ij=± VlOO - x2.

Considering first only the upper half of

the circle (figure) we have

VlOO - (x + Ax)2

y = VlOO - x2
;

y + Ay

.-. Ay

Multiplying and dividing by the sum of

the two radicals,

VlOO - (x + Ax)2 - Vioo - x2.

VlOO

Ay
2x Ax - Ax2

Hence

and

VlOO - (x + Ax)2 + VlOO - x2

Ay _ 2x + Ax

Ax

lim
Ay

VlOO - (x + Ax)2 + VlOO
2x X = tan 6.

X2Ax=^oAx 2 VlOO - x2 VlOO

At any point on the lower half of the circle, tan d =-\
.

•

VlOO — x2

In all these examples the slope of the tangent at any given point may be

obtained by substituting the abscissa of the point in the value of tan 0.

Exercises. Calculate the slopes of the tangents at any point (x, y) on the

following curves:

1. y = I x3. 4. 2/2 = 4 X. 7. x^ - y^ = 1.

2. y = 2 x2 - 3 X. 5. y2 = - 9 X. 8. 9 x^ + 16 y' = 144.

3. y = x3 - X. 6. x2 + y2 = 1. 9. 4 x2 - y2 = 4.

Calculate the slope in each of these examples when x = 1. Note the

results in exercises 6 and 7 and explain.
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210. Derivative.— The expression lim ( -^j occurs so frequently

in mathematics that a special name is applied to it. Starting

with y as any given function of x, say / (x) , we can derive from

this a second function of a; as follows. Calculate f (x -{- Ax) — f (x)

or Ay, divide by Ax, and pass to the limit by allowing Ax to approach

zero. Call the new function of x so obtained f'{x), so that

/'«=i™(i!)-

This is called the ^rs^ derived function off{x) or thej^rs^ derivative

off(x), and the expression

sx^oXAxJ

is called the first derivative of y with respect to x. It is usually

written in one of the forms

Hence the slope of the tangent to the curve y = f(x) at a point

(x, y) is

dv
doc

211. Calculation of Derivatives.— We have already calcu-

lated the derivative of y with respect to a; in a number of cases.

We now obtain a few simple formulas for the calculation of deriva-

tives. Three steps are involved in every case: (1) the calculation

of Ay, (2) division by Ax, (3) evaluation of the limit as Ax = 0.

We shall assume that such a limit exists.

Formulas for Calculating Derivatives.

I. J)^ (c) = 0, c being a constant.

(1) For if c is a constant its change is 0, hence Ac = 0.

(2) Therefore ~ = 0.
Ax

(3) Hence lim ^^ = or D, (c) = 0.
Ax = Ax
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II. D^ {cij) = c D^i/, c being any constant.

Proof.

(1) The increment in y being Ay, the increment in cy will be c Ay,

(2) Dividing by Aa:, the D. Q. of cy relative to x is c-r^-
Ax

Av
(3) Let Aa: = 0. Then c does not change, while —^ becomes

Dx (y) . Hence

DAcyy=Vimc^ = cD,y.
Ar=o Aa;

III. When ?/ is a sum of several functions of x, as

y = u-{-v-\-w-\- • • •
, where u, v, w, . . .

are functions of x, then

n^u = D^ti + n^v + D^w + • • .

Proof. When x takes an increment Ax, let the corresponding

changes in u, v, w, . . . he Au, Av, Aw, . . . respectively. The
total change in y is, therefore,

(1) Ay = Au -\- Av -]- Aiu -\- • .

(2) Then ^- = f^ +^ +p + . . .
.

Ax Aa; Aa: Aa;

(3) Let Ax = 0. Then by definition (210), ^ approaches D^y,

rr- approaches D^u, etc. Hence

D^y = D^u + DxV + D^w + • • •
, when y = u -{-v -\- w -\- • .

IV. Let y be the product of two continuous functions of x,

say u and v.

y = u ' V.

When X is changed to a; + Ax, let u change to u + Am and v to

V -}- Av. Then

2/ + A?/ = (u + Au) {v + Av) = ?^y + M At' + y Af< + Am Ay.

(1) Hence Ay = u Av -\- v Au -\- Au Av.

(2) Then -^ = -u-_ + y-— 4-Au—

•

Ax Ax Aa; Ax
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(3) Let Ax = 0. Then t^' -;— ' -r~ approach D^y, D^u and D^v
^ ^ LX LX diX

respectively. Also Aw = 0, since we assume m to be a continuous

function of x (205). Hence (2) becomes

D^y = u D^v + V Da^u, when y = u • v.

V. Let y = -,u and v being continuous functions of x.

u -\- Aw
Then y + C.y = -^^^-^,

u-\- Ml u V iya — u^v
(1) and Ay = -^^ - - = ,2 + ,Ay

"

Am Ay
V- U-—

Av Ax Ax
(2) Hence ^^ =

„. + „a,

A?/ t^D^ii — uD^t^
(3) and I>.2,=Jim-= ;,

VL Let y be a function of u, where m is a function of x. Thus

y = w2^2m; m = 2a;2 + l.

When x changes to re + Ax, u changes to m + Aw and y to

Ay _ Ay Aw
Now A^-Aw'Ax'

Hence I>^y - 1>„2/ • D^u.

Collecting our formulas we have:

(A) D^c = 0.

(B) D^ {cy) = c I>^?/.

(C) i>x (« + t' + ^t' + • • • ) = I>ocU + I>xi^ + DooW + • • • .

(D) n^ (u ' v) = u D^v + ^ I>a>u.

/ii\ vD^ii — uD^v

(F) D^y =- D.,y ' n^u.

212. We next derive the following standard formulas:

(G) i/=x"; DJ/ ^nx'^-K

(H) i/-logx; !>.?/ = ^-
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(I) y = r/'; n^!/ - a* log a.

(J) 2/ = sinx; D^y = cos a?.

(K) y = cosir; D^y = — sinx.

(G) y =^ x"; assume n to be a positive integer.

(1) Hence A2/ = nx"-iAx + ''^^^^^^a:''-2Ai'+ • • • + aI-".

(2) Then ^ = nx" - + "^^f^
." -' A. + • • • +Ax"-'.

^ ^ Ax 1*2

(3) Let A.T = 0. All terms on the right of the last equation

vanish except the first, and

lim ^ = D,y = nx^-K

The proof when n is not a positive integer will be given after

formula (H) is derived.

(H) y = logx; ?/ + A?/ = log {x + A.t).

y- _J_ At / At \

(1) A2/ = log (x + Ax) - log X = log—^- = log(^l+-^j-

(3) Let Ax = 0. We must evaluate
X

'

I Ax
lim log I 1 + -^

Ax = \ X

Let z =— ; then 2 = 20 when Ax = 0, provided x ?^ 0. [x =
Ax

is excluded by our standing assumption of continuity (205).] We
must now evaluate

Let z = 1, 2, 3, . . . , n. The corresponding values of fl + -j

are 2,2.25,2.37, ...,(! + -). As n increases, these values



188 DERIVATIVES [212

steadily increase, but always remain less than 3, no -matter how

large n may be. For, by the Binomial Theorem,

y-^n) ~^'^'\^ 1-2 n2+ 1.2-3 n^^
to (n + 1) terms

_,.,, }~n) V~7ilV~^il
,

^to(n + l)

^"^1-2^ 1.2-3 "^
\ terms.

As n increases, each term of the expansion increases as well as

the number of terms. Also all the terms are positive. Hence

their sum increases with n. Further compare the above expansion,

leaving out the first term (=1), with the geometric progression

2 2- 2" ~ *

whose sum is less than 2. (-^)
For all values of n, however large, our expansion is less, term for

term, than the progression. As n = oo , the sum of the progression

approaches 2, hence the expansion, excepting its first term, ap-

proaches a limit less than 2. Adding the first term, the limit is

less than 3.

This limit is an irrational number denoted by the letter e, and

has the approximate value

e = 2.7182818 + • • - .

We have now the result that

1
lim 1 +

z

when z approaches infinity through positive integral values. The

same is true when z increases continuously, but we shall not stop

for the proof, which may be found in texts on the calculus.

Then lim log ( 1 + - ) = log e,

and hence Z>x (log x) = ^ log e.
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Let us now take e as the base of our system of logarithms, so that

log X shall mean loge x. Then

loge = logeC = 1.

Hence D^ (log x)= --

Logarithms to the base e are called natural or Naperian loga-

rithms. In the theory of mathematics natural logarithms are in

general use, common logarithms, to the base 10, being utilized only

for numerical computation.

We can now derive formula (G) without any restriction on the

value of n.

From y = x""

we have logy = n log x. (Base e.)

Hence Z)x (log y) = Dj. (n log x).

Now in formula (F) replace y by log y and u by y. It becomes

D,(log y) = D,(log y) • D,y = \^D,{y), from (H).

Also Dx{n\ogx) = -> from (B) and (H).

-D^y =-
y X

or Dxy = —-
> where y = x".

X

Hence D^x"" =— = nx""-^.
X

(I) y = a^.

Taking logarithms, logy = x log a.

Hence D^ (log y) = D^ (x log a).

But Dx (log y) = -Dxy (see above)

and Dx (x log a) = log a.

Hence - D^y = log a,

or D^y = y log a, where y = a*.
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Therefore Z)jO'^ = a"" log a.

(J) y = B\nx', y-\- Ay = sin {x + Ax).

I Ax\ Ax
(1) Ay = sin (x + Ax) — sin a: = 2 cos ix-{- —

j
sin -^ • (158.)

/ ,
Ax\ .Ax .Ax

2 cos kc + -^ sm -p^ - a x
sm

Ay -^--V-^T;-T / A.N-2
(2^ Ax- ^^

^°'V +2; A^

2 .

(3) Let Ax = 0. Then

. Ax
sm—

cos fa: + ~] = cos x, and —^— = 1. U60. Replace x by^-j

lim --^ = 1>^ sin a? = cos a?.

AX = Arr

(K) y = cosx; ?/ + A^/ = cos (x + Ax).

/ Ax\ Ax
(1) A?/ = cos (x + Ax) - cos x = - 2 sin f x + -^ j

siny • (158.)

. Ax
. sm -^

Ay . / ,
Ax\ 2

(2) Ax = -^^n"+T)-^-
2

(3) .'. lim -^ = J)^ cos a? = - sin a;,
^ ^

Ax^o Ax

By suitable combinations of formulas (A) to (K) the derivative

of any function may be calculated.

213. Examples.

1. Calculate Dxi^x^ + ^x).

Dx (4 x3 + 3 x) = Dx (4 x3) + Dx (3 x) (C)

= 4 Dxx^ + 3 Dxx (B)

= 12 x2 + 3. (G)

2. Calculate ^^(l+bgx)
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J. ( c^ \ _ (1 + log x) D:ce' - fi^Dx (1 + log x) .„.

"^'[l+logxl (1+logx)^
^""^

(D, (C), (H),

(1 + log x) e^ — e^ -

' (r+iogx)2

^ xd+logx)-!
X(l+l0gx)2 •

3. Calculate DxCSsin^x).

Dx(3sin2x) =3Dxsin2x (B)

= 6 sin X Dj; sin x (F)
;

{u = sin x)

= 6 sin X cos x.

214. Exercises. Calculate D^^y when

:

1. y = 3 x4 + 5 x3. 10. ?y = log (x + 2).

2. y = 2-3 + 1. 11- 2/ = log(3x2 - 1).

Q 1 J , 1 i
12. 7/ = f^ log X.

» 3. t/ = ^x' +ix*.

4. y = x = - 2 x^.
13. 2/ = sin X log cos X.

,
1

14. 2/ = esinx.

5. 2/
= -L+_L.
Vx v^;

6. y = sinx + e^^.

7. w = e^. 16. y = cotx

I c i / sin X
15. y = tan x =

V cos X

,8. y = a^^ 17. y = log tan X.

18. y = sec x,

215. The Derivative as a Rate of Change. — The difference

Aw
quotient —^ gives the average rate of change of y relative to x when

X changes by an amount Ax. The smaller Ax, the more nearly will

the D. Q. represent the actual (or instantaneous) rate of change

of y relative to x. Hence the limit of the D. Q. as Ax = is taken

as the actual rate of change.

Rule. To find the rate of change of one quantity relative to another,

calculate the derivative of the first quantity with respect to the second.

Examples.

1. y = x2. Then Dxij = 2 x.

Hence y changes 2 x times as fast as x.



192 DERIVATIVES [216, 217

2. In the case of a falling body, if s be the space and t the time and the

body starts from rest, we have
s = I gt^.

Then Dis = gt = velocity at time i.

3. Find the rate of change of the volume of a sphere relative to the radius.

F = |7rr3; DrV = 4irr2.

That is, the volume of a sphere changes 4 irr2 times as fast as the radius.

216. Exercises. Calculate the rate of change of:

1. y relative to x, when y = x^ + x^.

2. y relative to x, when y = sin x.

3. y relative to x, when y = sin x cos x.

4. y relative to x, when y = sin2 x + cos^ x.

5. y relative to x, when y = e^.

6. the volume of a cube relative to its edge.

7. the surface of a cube relative to its edge.

8. the surface of a sphere relative to its radius.

9. the volume of a cylinder relative to its altitude.

10. the volume of a cone relative to the radius of its base. ,

11. the area of a circle relative to its perimeter.

12. A body starts when t = and moves so that the space described in

time t (seconds) is s = 16 <2+ 10. Find its velocity when t = 10; t = 5; t = 0.

13. The space-time equation being s = 2t^ + 3t — 5, find the velocity at

any time /; what is it when t = 10; i = 1; i = ?

14. As in 13, when s = 10 sin
(
3 t + |j.

16. Given two sides and the included angle of a triangle. Calculate the

rate of change of the third side relative to each of the given sides and to the

given angle.

217. Higher Derivatives.— When i/ is a function of x, D^y is in

general a new function of x; the derivative of this new function

is called the second derivative of y with respect to x and is written

Dly. The derivative of the second derivative is called the third

derivative, written D^y, and so on.

' Exam-pies.

1. 2/ = x3. Dxy = 3x2; D|2/ = 6x; D^y = & ; Dly = 0.

2. y = smx. Dxy = cos x; Dly = — sin x; D^?/ = — cosx ; etc.

3. y = X". Dj2/ = nx«-i; D^y = n (n — l)x"-2 ; ....

D> = ?i (n - 1) . . . 1 = |n.
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218. Maclaurin's Series.— Suppose that a given function of

X, f {x) , can be represented by a converging power series in x, thus

:

(1) f {x) = Co -\- cix + cox"^ -{- czx^ -{ ' +c„a;"+ • • • .

To find the values of the coefficients Cq, ci, C2 • . Put x =
in (1) and we have Cq determined by

/(0)=co.

To get Ci, calculate DJ{x) or f'(x) from (1);

(2) f'(x) = ci +2c2X + 3c3X- + • • • + /ic„x"-i + . . . .

Put X = in (2) and we have ci determined by /'(O) = cu
From (2) calculate DJ'(x) or f"{x);

(3) /"(x)=2c2 + 2.3c3a;4- • • • +w(n- l)x"-2+ . . . .

Put a: = in (3) and we have

r(0)=2c2 or C2 = ^r(0).

Calculating DJ"{x), or f"'{x), we have

(4) /'"(a:) = 2 . 3 C3 + • • • + n (n - l)(n - 2) a;"-^ + • . . .

1When X =
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219. Examples.

1. Develop e^ in a power series in x.

fix) = e^; nx) = e^', /"(x) = e^; . . . ;
}^^\x) = e^.

Putting X = 0, we have

/(O) = 1 ;
/'(O) = 1 ;

/"(O) = 1 ; . . . ; /<"H0) = 1.

Hence

->+-+|+i+---+|+
This series converges for all values of x, and is used for calculating the value

of e^ to any desired degree of approximation.

When X = 1,

from which e can be found approximately by taking a few terms of the series.

2. Develop sin x in a power series in x.

/(x) = sinx; /'(x)=cosx; /"(x) = -sinx; /'"(x) = - cos x, . . . .

When X = 0,

/(0) = 0; /'(0)=1; /"(0)=0; /'"(O) = - 1, etc.

Hence
X^ X** x^sinx=x-|3+^-|y+- • • .

This series converges for every value of x, and may be used for. finding sin x

to any degree of approximation. Thus, put

X = 10° = :^ radians.

Then

^'''^^°^h>-\[v^'-^m[l^'-

Note. In computing mth an alternating series {signs alternately + and —
),

the error committed in rising only a few of the first terms of the series is always

numerically less than the first term neglected.

Thus the error in sin 10° as obtained from the three terms written above is

less than

A^ fiLV or less than .000 000 000 98.
5040 \ 18/

Hence the error is less than 1 unit in the ninth decimal place.

Exercise. Show that

cosx = l-|-2+||-^+ • • • .

Calculate cos 10° to five places.
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3. Develop log (1 + x) in powers of x.
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Then

/'(x)=n(l+rc)'»-i; /'(0)=n.

fix) = n (n - 1) (1 + a:)"-2; /"(O) = n (n - 1)

J"'{x) =n{n- 1) (n - 2) (1 + a;)"-^; /'"(O) = n (n - 1) (n - 2).

/""' {x)=n{n-l){n-2) . . . (n - m + 1) a;"-"*;

/'"»> (0) = n (n - 1) (n - 2) . . . (n - w + 1).

Hence by Maclaurin's series,

, n(n — l) ^ ,
n(n — 1) (n — 2) „ ,

(1 + ic)" = 1 + na? + -J-^^' + 1.2.3 "^ + * " '

n (rt - 1) . ' (n - m + 1) «.,...
"^

1 . 2 .... m -T
• • >

provided that the serfes on the right, called the Binomial Series,

converges.

Convergence of the Binomial Series.— Denote the mth term

of the series by u^, the (w + l)th term by w^+i- Then

_ n (n - 1) (n - 2) . . . (n - m + 2) ^_^
^"^

~
1 . 2 . 3 .... (w - 1)

^ '

n (n - 1) (n - 2) . . . (n - m + 2) (n - m + 1)

1.2.3-
. . . (m - 1) . mUm+l = — ' \ ^\ ^-Tin TV^. ^"

Applying the ratio-test (202), we have

u^ ^ n-m + 1
^ ^ /n±l _ ^

^_
u^ m \ m J

The quantity in the last parenthesis is numericallij less than 1,

when m is larger than w + 1 ; to secure this we simply start far

enough out in the series to make m > n + 1. Then the ratio

Um + \ -^ Um will be numerically less than x, and hence, if x he

numerically less than 1, the series converges. When x is numeri-

cally greater than 1, the series diverges. For the ratio m^+i -^ Um

equals the product of two factors, ( — Ij and x. As m

increases the first factor approaches — 1 as a limit. Hence if

|a:| >1, the product will also ultimately be greater than 1 numer-

ically. Finally, when a; = ± 1 our binomial reduces to 2" or

respectively and we need not consider the series at all.
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We therefore use the binomial series for (I + x)" only when

|x|<l.

221. Binomial Series for (« + 6)". — We have

bY
(a + br = a" (l +

^J
A, b n(n-l) b- n(n-l)-.-(n-m+l) 6'"

,
\

1, "^''a^ 1-2 a-'"^""^ 1.2-...m a'^^'")
or,

(a + 6)" = a" + n«»-i 6 + !il^_zil,,«-2ft5 ^ . . .

,
n (n - 1) . . . (» - m + l) „_„. ,„"^

1 . 3 .... m -r • • • .

The series converges when - < 1, that is, when b is numerically

less than a.

The mth term of the expansion is

y _ n{n-l) . . . (n-m + 2) _^
"""• ~

1 . 2 .... (m - 1) ""
•

Examples.

2 ' 1-2 1-2.3
= 1 -^,X-IX^-:(\X3+ • • • .

2. Find an approximate value of V-QS.

V^ = Vl - .02 = 1 - ^ (.02)- i (.02)2 _ . . . = .990+.

The neglected part of the series is less, term for term, than the G. P.,

(.02)2 + (.02)3 + . . . + (.02)'^ + • • •

,

whose sum is

S = Y&^ = .0004 approx.

3. Find the 7th term of the expansion of v (2 — 3 ^Jx)* in powers of x.

%/(2 - 3 V^)^ = (2 - 3 \/x)K

Hence a = 2, 6 = — 3 \/x, n = |, ?n = 7.

Then .,-
^'^-\'.<|:3^.';;V'-°'

2'-'(-3V.)°-^x..

In this case the expansion converges if

|3 V^l <2, or |9x| <4, or |z|< t
For negative values of x the expansion would involve imaginary terms be-

cause of the presence of yx.
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222. Exercises.— Write the first four terms of the develop-

ments in series of the following functions, and give the values of

X for which the series converge.

1
1.



CHAPTER XIV

Computation. Approximations. Differences and
Interpolation

223. Remarks on Computation.— (1) In a series of similar

computations, perform similar operations together. If the same

number is to be added to each of several others write it on the

edge of a slip of paper and hold it over or under each number in

turn.

(2) When a result is wanted to say three decimals, computa-

tions should be carried to four places so as to avoid accumula-

tion of errors which would vitiate the third place.

(3) As a general rule, 4-, 5-, 6-, and 7-place logarithm tables

will yield respectively not more than 4, 5 6, or 7 significant figures

of a number.

(4) Results should be stated with an accuracy commensurate
with that of the data. Thus, if a line be measured 10 times to

0.01 ft., the mean of the 10 measures should be given to 0.001 ft.

More than three places in the mean would be a useless refine-

ment. Do not state an angle to seconds when it results from
computations which render even the minute uncertain.

224. Useful Approximations. — Let the student verify that,

when X, y, u, v are small decimals, we have approximately:

6.1^ = 1+.-.

1.
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12.
1 1 ^1

13. (1 + x)2 = 1 + 2 X.

14. (1 -x)2 = 1 -2x.

15. e-^ = 1+ X.

More accurately

:

21. sin X = X —'J x3.

Exam-pies.

1. .987 X .993 = (1

16. loge (1 + X) = X.

17. logio (1 + x) = .43 X.

18. sinx = X (radians).

19.' tan X = X.

20. cosx = 1.

22. tan X = X + J x3.

23. cos X = 1 - i x2.

013) (1 - .007) = 1 - .013 - .007 = .980.

The error is .013 X .007 = .000091.

1 ^ 1

987
2. 1 + .013 = 1.013.

.013) i = 1 - ^ (-013)

1 - .013

3. V^987 = (1 -

= .9935, correct to four places.

4. Find the range of vision from a point h ft,

above the surface of the earth.

Let A be the station of observation (figure),

AB = h ft., BC = DC = R = 3960 miles.

Then
R = 3960 X 5280 ft.

yJ{R + h)2 - m = V2 Rh+h^= V2 Rh\ 1 +
n/'

For moderate elevations

mately.

Hence

'2R'

The error in this value of x is -r^ x approximately.
4 K

Exercises. Calculate the approximate values of,

^. .85X1.12
.982' 1.15 X .92

*• 1.125' ^975

2R

small and the second radical = 1 approxi-

l2Rh approximately.

h

5.

3. Vl.20;

6. (1.15)2.

7. Prove the last statement of example 4.

8. How far can an observer see from a mountain one mile high ?

9. What is the distance to the horizon as seen by an observer on the sea-

shore with his eye 6 ft. above the water level ? (Three-mile limit.)

10. If the range of a gun on a warship is 10 miles, how high should the

lookout be stationed to detect objects coming within range?
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11. What is the error in each of the approximations

(1) . . . (23)whenx, r/,M, v = 0.1? When x, y,u,i' = 0.01?

12. Calculate to four decimal places sin 130° and cos (— 100°). (Reduce

to functions of angles < 45°.)

13. Calculate a 4-pIace table of natural sines, from 0° to 45°, at intervals

of 5°.

14. As in exercise 13 for a table of natural cosines.

225. Computation of Natural Logarithms.

We have \og(l +x) = x- ~ + ~ -~ -^ • • • .

Replace a: by — a;

:

x^ x^ X*
log (1 - x) = - X 2 3 4

Hence, log (1 -^ x) - log (1 - x) = 2^x -^~ + j -\-

provided — 1 < .r < 1.

But Iog(l+a;) -log(l -x) = log^
"^^

1-x

^ ^ 1+x w + 1 1
Let :;

=
; or, x

I - X n ' ' 2n+l
Then log (1 + x) - log (1 - x) = log (n + 1) - log n

and

Iog(«+I)=log»+2[2^ +3^2^ + 5l2i+I? +
-

•]•

By means of this equation log (n + 1) can be calculated when
log n is known. The series on the right converges rapidly and
for all positive values of n. Putting successively n = 1, 2, 3, ...

,

we obtain in turn log 2, log 3, log 4, . . . .

We will now obtain an estimate of the maximum error made in

stopping at any term of the series.

Let A; = 2 n + L

Then the mth term of the series is

1

^'"
(2 m- l)A;2'n-i'

and the remainder of the series will be

p _ 1
,

1
I

1

(2 m+1) fc2 '"+1 ^ (2 m+3) k^ '"+3 ^ (2 m+5) k^^+^
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Then R^ is certainly less, term for term, than the series

1
fl I S ^

I
- 1- 1 1

since the series between the brackets is an infinite G. P. with ratio

T2- Also, since

k = 2n -\- 1 and n=l, .'. fc > 2 for all values of n. Hence

1

and therefore

R„, <

<2

(2m + l)A;^'"+i (2?^ + 1) (2n + l)2™+i

If we now include the factor 2 which stands before the bracket

in the equation giving log {n + 1), the total error is less than

4

(2 7W+ 1) (2 71+ l)-^'«+i

when log (n + 1) is calculated by using only the first m terms of the

series.

Thus in calculating log 5, we have n = 5 and the error in stop-

ping with the mth term is less than

4

(2m + l)ll2'"+i*

4
Hence when m = 1, the error is less than ^ 3 ; that is, if we use

only the first term of the series, log 5 will come out correct to 3

decimal places inclusive. When m = 2, the error is less than
4

TT-TT^ , so that the first two terms will give log 5 correct to 5 places,
O'lP
and so on.

Exercises.

1. What is the error in log 7 when only one term of the series is used? When
two terms are used ?

2. How many terms of the series are required to give log 7 correct to

10 places?

3. How many terms of the series are required to give log 17 to 20 places ?

4. Calculate a four-phice table of natural logarithms of the numbers from

1 to 20 inclusive.

226. Common Logarithms. — When the natural logarithm of

a number is known, its common logarithm may be found by



227] DIFFERENCES 203

multiplying by a certain constant factor called the modulus of the

common system of logarithms. We shall show that this modulus,

or multiplier, is

M = logio 6 = 0.4342945 ....
Let the natural logarithm of any number be x, its common loga-

rithm y. To express y in terms of x. We have, if n be the number,

loge n = X and logio n = y,

or, n = e^ and n = 10^.

Hence 10^ = e\

To solve for y, take logarithms of both members to the base 10.

Then y = a:logioe, .

which proves our statement. To find the value of logio e, we need

only calculate loge 10 and take the reciprocal of the result.

Exercises.

1. Calculate the modulus Af to 5 places.

2. Calculate logio 101 to 10 places.

3. Calculate logio 11 to 10 places.

4. Calculate a four-place table of common logarithms of the numbers

from 1 to 20 inclusive.

227. Differences.— Consider a sequence of quantities uq, ui,

U2, . . . , Un, . . . , and form the differences, Auq = ui — Uq,

Aui = U2 — Ui, . . . , Aun-i = Un — Un-i, • , callcd the first

differences. Form next the differences of these differences, called

the second differences of the original sequence, and so on. We
obtain in this way the entries in the following difference table,

where the successive difference columns are denoted by Ai, A2, A3,

. . . and the original sequence by Aq.

uo

Ao
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We observe that the coefficients follow the binomial law. Let

the student prove by induction that this law is followed in all

the successive difference columns,

228. The nth term of the sequence, in terms of its first term

and the first terms of the first n difference columns.

Let the first term in the kth difference column be denoted by

A^Wo- Then we have

Wo = Wo,

AiWo = ui — Uo,

A2W0 = U2 — 2ui+uo,
A3U0 = W3 — 3 W2 + 3 wi — Uo,

Solving successively ior uq, ui, U2, . . , we have

Wo = Wo,

wi = Wo + AlWo,

W2 = tio + 2 AlWo + Aotto,

W3 = Wo + 3 AiWo + 3 A2W0 + A3?*o,

Here the coefficients again follow the binomial law, and there is

suggested the formula

(1) W„ = Wq + nCiAiWo + nC2^2U0 + • ' • + A„Wo-

F'Assuming the formula true for m„, we can show that it holds

for Un+i. For apply formula (1) to the nth term of the first

order of differences, which is Un+i — Un. We obtain

Wn + l
- ^ln = AlWo + nClAzWo + „C2A3Wo + ' • " + A„+ iWo.

Adding equation (1) to this we get

Wn + l
= Wo +(„Ci + 1) AlWo +(„C2 + nC\) A2W0

+ (nC3 + nCa) A3W0 + • • • + A„+iWo.

But

„Ci + l=n + lCi, „C2 + «Ci=n + iC2, n^S + n^. = n + l^g, • • • ,

as is easily verified by substituting in the values of the binomial

coefficients. Hence

Wn +l=Wo+n +lCiAiWo + n+lC2A2Wo+n +lC3A3Wo+ " ' " +A„+iWo.

Hence, if (1) holds for m„, it also holds when n is replaced by

n + 1, that is, for Un+\. But we have shown that it holds for W3;

hence it holds for u^, hence for wg, and so on.
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229. The sum of the first n terms of the sequence, in terms

of its first term and the first terms of the first 7i — 1 difference

columns.

From the equations just preceding formula (1) we have, by-

addition,

uo = Uq,

iio + wi = 2^0 + AiWo,

Wo + wi + 1^2 = 3 Wo + 3 AiWo + AoUo,

2^0 + Ml + W2 + W3 = 4 Wo + 6 AlWo + 4 A2W0 + AsllQ.

The coefficients on the right are respectively those of the expan-

sions of (1 + xy, (1 + x)-, (1 + x)^, and (1 + x)\ the first term of

the expansion being omitted in each case. Let s„ denote the sum
of the first n terms of the sequence;

S„ = Wo+Wi+W2+ • • • +W„_i.

Then by analogy with the preceding equations we assume that

(2) S„ = „CiWo + nCo^ltk) + nC3A2Wo + „C4A3Wo H (- A„_iWo.

We show by induction that (2) holds for all values of n. Adding

(1) of (228) to (2) and noting that Sn+i = s„ + Un, we have

5n + l = (.Ci + l)Wo+ UC2+ „C,)AiWo+ UC3+„C2)A2Wo+---+A„Wo

= „ + lCiWo+ n + lC2AiWo+,i + lC3A2l<0+ ' * • + A^Wfi.

Therefore (2) is true when n is replaced by w + 1. But we veri-

fied above that (2) is true when n = 4. Hence it is true when
n = 5, hence when 71 = 6, and so. on.

When the rth order of differences is zero, all following orders of

difference are also zero. Hence any term of the sequence and the

sum of any number of terms can be expressed in terms of the first

term of the sequence and the first terms of the first r — 1 difference

columns. For then formulas (1) and (2) both stop with the term

involving A^-iWo, and we have

(3) w„ = Wo + „CiAiWo + „C2A2Wo + • • • + „Cr_iA,_iWo.

(4) Sn =nClUo + nCsAiWo + nCaAgW,, + • • • + „CVA,_iWo.

Example. Find the sum of the squares of n consecutive integers beginning

with 10.

Sn = 102 + 112 + 122 + . . . + (10 4- n - 1)2.
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Our difference table is as follows:
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This formula has been derived when n is a positive integer.

It is also true for fractipnal values of ??, provided the series on the

right converges. We shall not stop for the proof, but merely

give some simple applications. In practical cases the successive

differences Ai/(.To), A2/(;ro), . . . become rapidly small, so that

first differences are usually sufficient, second differences are occa-

sionally needed, while third and higher differences are required

only in theory or in the calculation of extensive tables.

For fractional values of n, formula (5) gives values of the func-

tion intermediate to those in the table. Thus when n = 2^, we
get / (xq -\-2^h), which is the ordinate to the curve y = f(,x) falling

midway between the ordinates f (xq -\- 2 h) and f{xQ + 3h).

Example 1. Given the values of log 100, log 101, . . . , log 109 to five

decimal places, to calculate log 100.7 and log 107.35.

Here /(a;) = log x; xo = 100; h = I. To calculate log 100.7 we put n = .7.

Our difference table is,
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Example 2. Given sin 10°, sin 15°,".
. . , sin 45°, to calculate sin 17° 20'.

The tabular numbers and their differences are given below

:

A3/(X)

- .0006

fix)

sin 10° = 0. 1736

15° = .2588

20° = .3420

25° = .4226
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6. Greenwich Moon's Moon's
mean time. right ascension. decUnation.

h I h m a

i\-
'

5 14 32.14 18° 47' 37". 7

2 ,". 7' 5 19 49.41 18° 49' 15". 9
4 5 25 6.62 18° 50' 20".

6

6 5 30 23.69? 18° 50' 51".

7

8 5 35 40.59 18° 50' 49".

4

10 5 40 57.26 18° 50' 13". 7

Calculate the moon's right ascension and declination at 0'' 35°" 20' Green-
wich mean time.

6. From a four-place table take log 310, log 320, . . . , log 400. Hence
calculate log 317.5.

232. Differences as a Check on Computed Values. —When a

number of values of a function are calculated for equal intervals of

the argument, the differences should, ordinarily, vary in a regular

manner. An irregularity in one of the difference columns indi-

cates an error in the tabular values, and often enables the com-
puter to determine the amount of the error and so correct it.

Example.

log 70 = 1.8451

75 = 1.8751

80 = 1.9030

85 = 1.9284

90 = 1.9542

95 = 1.9777

100 = 2.0000

105 = 2.0212

The irregularity in A2 causes us to examine Ai ; here the differences .0254

and .0258 are probably incorrect, which throws suspicion on the tabular number
standing between them, namely 1.9284. This number should evidently be
larger, and by trial we find that 1.9294 is probably the correct value.

Exercises. Correct the following tables:

'
3.

Ai
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Undetermined Coefficients. Partial Fractions

233. A useful method for expanding certain expressions in

series depends on the following Theorem on Power Series.

If the equation

(1) ao + aix + a2X^ + • • • + a„a;" -f • • • =

is true for all values of x from a: = to a; = a:o inclusive, where
Xq ^ 0, then all the coefficients are zero, that is,

ao = 0, ai = 0, a2 = 0, . . . , a„ = 0, . . . .

Proof. Since (1) is true when a; = we have, putting for x,

ao = 0.

Then (1) reduces to

aix + a2X^ + • • • + a^a;" + • • • =0,
or

(2) a;(ai+a2a:+ • • • +a"x"-i+ • • • ) = 0.

This must be true for all values of x from to a;o. Choose for x a

value £ between and a;o. Then

£(ai+a2s+ • • • +a''£"-i+
. . . )=0.

Then, since £ 5^ 0, we must have

ai+a2£+ • • • +a,j£''-i+
. . . = 0,

or,

ai = - £ (as + age + • • • + a„£"-2 +...).

The series in the last parenthesis converges, and therefore has

a finite sum S. For, putting a: = £ in (1), and omitting the first

two terms, we have left the convergent series

a^e'- + a3£3 + . . . + a,,s^ + • • •

,

and this remains convergent after division by £2. Hence

ai = — sS

where S depends on e, but is finite for all values of £ between
210
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and xq. Assume now that ui is not equal to 0; say ai = h. We
can now take s so small that eS shall be numerically less than h;

hence ai cannot equal h. .'. ai = 0.

Then (1) reduces to

aox- + a-sx^ + • • • + anX"" + • • • = 0,

or, x^ (a2 + asa; + • • + anx"-~ +...)= «•

Choose for x a value e (not necessarily the same as e above) between

and Xq. Then

£2(«2 + a3^'+ • • • +an£"-2+ . . . )=0.

Hence, since e 9^ 0, we have

02 + «3=- + • • + ans""" + • • • = 0,

or, 02 = - c (03 + • • • + a„e--' +•••)= 0.

Here again the series in parentheses converges and has a finite

sum. Hence by taking e sufficiently small we can show that 02

cannot equal any number h, however small. /. 02 = 0.

Similarly we show that each coefficient must be zero.

234. Theorem of Undetermined Coefficients. — If two power

series in x are equal to each other for all values of x from a: = to

X = xo inclusive, then the coefficients of like powers of x in the

two series must be equal.

Hypothesis:

(1) ao + aix + a2X" + • • + anX" + • . • =

60 + bix + &2a:2+ . . . -f 6„a;" + • • • when ^ a; ^ a^o-

Conclusion:

ao = bo, ai = 61, a2 = &2, • • • ,
ct/i = &n, • • • •

Proof. From (1), by transposition, we have

ao-&o + (ai-&i)^+(«2-&2)a;2+ • • • +(a„-6„)a:"+ • • • = 0.

Hence by the preceding theorem,

ao - 60 = 0, ai - 6i = 0, a2 - 62 = 0, . . . , a„ - h„ = 0.

Hence the conclusion stated above.

Corollary. The theorem remains true when either or both

of the infinite series reduce to polynomials. We consider a poly-

nomial of 7n terms as an infinite series in which all coefficients

after the mth are zero.
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Assume
1 +x

1 -X2
+ X -

= ao + aix + 02x2 + asx^ +

Y X''

Example 1. Develop t—:

—

^^—^ into a power series.

1 -

Clearing, and writing the coeflBcients of like powers of x in vertical columns, we

have
1 -x2 + ai X + a2
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235. Partial Fractions.— It is sometimes desirable to resolve a

given rational fraction into a sum of simpler fractions, called 'par-

tial fractions. This can be done when the denominator of the

given fraction can be factored. Several cases arise, according to

the nature of these factors.

For reasons which will presently appear, the methods to be ex-

plained apply only to fractions in which the degree of the numerator

is less than the degree of the denominator. When this is not the case,

divide numerator by denominator until a remainder of less degree

than the denominator is obtained.

Case 1. The denominator can be factored into linear factors

of the form {ax + 6), no two factors being equal.

Rule. The fraction can be resolved into a sum of simple frac-

tions, of the form —r , equal in number to the factors of the
' ax -{-0

given denominator. Here A is a constant.

5a; -1 5x-l .
A .

B
Example.

^2 _ 6x + 5 "
(x - l)(x - 5)

"
x - 1 + x - 5*

Clearing: 5 x - 1 = A (x - 5)+ 5 (x - 1),

or, 5x-l ={A+B)x -{5 A +B).

Since the given fraction must be equal to its partial fractions for all values

of X except x = 1 and x = 5, the last equation must be true for all such values

of x; hence we equate coefficients of like powers of x (233, Corollary). We
obtain

5 = A+B; -l=-i5A+B).
Hence A=-l; 5=6.

5x-l ^ -1
. 6

x2-6x + 5 x-l^x-5'

A shorter method for finding A and B is as follows: consider again the

equation
5x-l=Aix-5)+B{x-l).

Let x=5; 24 = 4 5; B = 6.

Let x = l; 4 =-4 J.; A=-\.

We can justify the use of the values x = 1 and x = 5, for which the given

fraction and one of the partial fractions become infinite. For the equation

5x-l ^ _1_ ^
x2-6x + 5 x-l'x-5

must hold except when x = 1 or x = 5.

Hence
5x-l =A(x-5)+5(x-l)
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is true for all values of x, except perhaps x = 1 and x = 5. It is therefore

true when x = 1 + £, however small e may be ; that is,

(1) 5(l + £)-l =^(l + £-5)+5(l+£-l).

Suppose our equation is not true when x = 1 ; let the two members differ by

a quantity h, so that

5X1-1 =A(l-5)+B(l-l)+/i,

or, 4=-4A+/i.

From (1) we have
4 + £ =-4^ + £A + £fi.

From the last two equations, by subtraction, etc.,

Since A and B are fixed numbers, h can be made as small as we wish by taking

£ small enough. Hence h cannot equal any number except 0.
.

236. Case 2.—The denominator contains a linear factor repeated

r times, as {ax + hy.

Rule. Corresponding to the factor {ax + hf, take a set of par-

tial fractions of the form

Ai A2
_._

Ar

{ax + 6) ^ {ax + 6)2
"^ ' "^ {ax + 6)'-

This is the most general set of fractions having constant numer-

ators and common denominator {ax + hy.

Example.

3 x2 - X +

1

A B C D
(X + 2)(x - 3)3 X + 2

"^
X - 3

"^
(X - 3)2

"^
(X - 3)3'

Clearing

:

3 x2 - x + 1 = A (x - 3)3 + B (x + 2)(x - 3)2 + C (x + 2)(x - 3) + D (X + 2).

Let X = 3; then 25 = 5 D; D = 5.

Let X = - 2; then 15 = - 125 ^; A =- is-

Since no other factors are available to furnish other values of x for substitu-

tion, we choose any convenient values, say x = and x = 1.

Put x=0; 1=-27A + 18B-6C + 2D.

Put x = l; 3 =- 8^ + 12B-6C + 3D.

Substituting the values of A and D already found, and solving for B and C,

we have

Hence

3x2-x + l _ -3 3 ^_12_^ . _J__.
(x + 2)(x-3)3 ~

25 (X + 2)
"^

25 (x - 3)
"^

5 (X - 3)2
"^

(x - 3)3
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237. Case 3.— The denominator contains a quadratic factor,

{ax~ + bx 4- c), which cannot be resolved into real linear factors.

Rule. Corresponding to a quadratic factor {ax^ -^bx -{- c), take

a partial fraction of the form

Ax + B
ax^ + 6x + c

The reason for this assumption may be illustrated by a simple

example.

2 X — 1
Example. Resolve _ -iw 2 -|-4 >

^^*° partial fractions.

If i = V — 1. the factors of x2 + 4 are x + 2 i and x — 2i. Suppose now
we assume

2x- 1 A B C
~i ~ I o V "I"

!(x-l)(x2 + 4) x-1 ' x + 2i ' x-2i

Combining the last two fractions into a single one, we have

B C ^ {B + C)x + 2{C-B)i
x + 2i x-2i x2 + 4

If now we introduce two new constants M, N in place of B, C, by the relations

B = M + iN; C = M - iN,
we have

B + C = 2M; i{C -B) = -2v^N=2N.

Hence in place of the fractions

B
,

C
x + 2i x-2i'

where B and C involve i, we take the single fraction

Mx+4Ar
x2 + 4 '

where M and N are real. Then, using B in place of M and C in place of 4 N,
let

2x-l A Bx + C
(x - l)(x2 +4) X - 1

"'"
x2 + 4

Clearing: 2 x - 1 = A(x2 + 4)+ (Bx + C)(x -1).

Put x = l; then 1=5 A; A = I.

Put X = 0; then - 1 = 4 A - C; C = |.

Equate coefficients of x*; then = A + B; B =- A =-|.

Hence
2x - 1 1

,
- X + 9

(X - 1) (x2 + 4) 5 (x - 1) ' 5 (x2 + 4)
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238. Case 4.— The denominator contains a repeated quadratic

factor, {ax^ -\- hx -}- cY.

Rule. Corresponding to a repeated quadratic factor {ax^ +
6a; + cY, take the partial fractions,

+ 7-i^fTe^Tv>+ • • • +
{ax^ + bx + c)'^ (aa;2 -{-bx + c)^^ ' {ax' -}-bx + cY

Example.
10 x3 + 7 X + 4 A Bx + C Dx + E
(X - 2) (x2 + 3)2 X - 2

"^
x2 + 3 "^ (x2 + 3)2

Clearing:

10x3 + 7x ,+ 4 = A (x2 + 3)2 + (Sx + C) (x - 2) (x2 +3)+ (Dx + E){x - 2).

Put X = 2; 98 = 49 A; A = 2.

Equate coeflBcients of x^, x^, x2, and x":

= A + 5,

10 = C - 2 5,

= 6.4+3B-2C + D,

4 = 9A-6C-2J5;.

Hence, B = - 2, C = 6, D = 6, £; = - 11.

Therefore,
10 x3 + 7 X + 4 2 -2x + 6 6x - 11

(X - 2) (x2 + 3)2 X - 2 ^ x2 + 3 "^ (x2 + 3)2

239. Exercises. Resolve into partial fractions:

-^-
x6 + x" - 8

x3 - 4x

5x + 12

3 x2 + 10 X + 3



CHAPTER XVI

Determinants

240. Determinants of the Second Order.

taneous linear equations

aiX-\-biy = ci,

aox + 62^ = C2,

are solved for x and y, we find

When two simul-

62C1 — b\C2
y =

aiCo — (I2C1

aib2 — a2bi
'

aibo — a2&i

To express these results it is convenient to use the notation

lai fei

02 fe^

(0162 — «2fcl),

where the square array between vertical bars is simply another

way of writing the expression forming the right member of the

equation. It is called a 'determinant, and in particular, a deter-

minant of the second order, because there are two rows and two

columns. The quantities ai, 61, 02, 62) are called the elements of

the determinant.

The value of a determinant of the second order may be obtained

by forming the products of elements which constitute the diagonals

of the array and giving these products the signs indicated in the

scheme below:

M'
This process is called " expanding the determinant."

The above values of x and y may now be written in the forms,
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Exercises.

1. State a rule for writing the above values of x and y.

Solve for x and y, by aid of determinants:

2. X - y = I, 3. 4x-32/ = 5, 4. 8x + 5y-6 = 0,

2x + ?/ = 3. 2x + ?/ = l. 4x + y + 4=0.

5. 2x+?/ + l=0, 6. 2x + y + l=0,
6x + 3y + 2=0. 6x + 32/ + 3=0.

241. Determinants of the Third Order. — We shall now define

a determinant of the third order in terms of determinants of the

second order by the following equation:

fli a2 as



242] DETERMINANTS 219

di bi ci
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Hence the infinite values of x and y above are equivalent to the

statement, " Parallel lines meet at infinity." In the second case,

when the lines coincide, the coordinates of any point on either

line satisfy both equations. Hence there are an infinite number of

solutions, and hence x and y appear above as indeterminate forms.

[See exercises 5 and 6 of (240).]

Exercises. 1. Consider the equations

' aix + h\y + ciz = di, kaix + khiy + kciz = 6,2, asx + bsy + czz = ds.

The first two are inconsistent if ^2 9^ kd\, and dependent when di = kdi.

Show that in the first case the only possible sokitions of the three equations

are infinite, and in the second case there is an infinite number of solutions.

2. Show that the equations

aix + h\y = and a2X + h^y =

have one solution (0, 0), or an infinite number of solutions, according as the

determinant of the coefficients is different from or equal to 0. Discuss also

geometrically.

3. Show that the equations

aix + h\y + c\z = 0, a2X + 62?/ + C2Z = 0, asx + hy + c^z =

have one solution (0, 0, 0), or an infinite number of solutions, according as the

determinant of the coefficients is different from or equal to zero.

{Hint. Eliminate z so as to get two equations in x and y and discuss these

as in exercise 2.)

4. Show that the equations

2x-32/ + 52 = 0, x + y-2=0, 3x-7?/ + llz =

are not independent. What is the relation between them?

{Hint. To find the relation between the equations, find ^1 and k2 such that

ki times the first trinomial plus /c2 times the second shall equal the third.)

243. General Definition of a Determinant.— The array of n

rows and n columns,

ai a2 as .
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If we form all possible products of n elements, each product to

contain one and only one element from each row and column,

and if these products are given proper signs, as will presently be

indicated, and added algebraically, the sum so obtained is defined

to be the value of the determinant.

Each product of n elements so obtained is called a term of the

expanded form of the determinant.

The elements ai, b^, C3, . . . , l,, form the principal diagonal.

The term aihoCs . . .In is called the principal term of the ex-

pansion.

244. Every term of the expansion of the determinant can he

formed from the principal term by rearranging the subscripts, leav-

ing the letters in their natural order.

For every term contains all the letters and all the subscripts,

and each only once, since it is a product containing one and only

one element from each row and each column. Hence if the letters

in any term be arranged in their natural order, the subscripts will

form some arrangement o^the numbers 1, 2, 3, . . . , n.

Conversely, every rearrangement of subscripts in the principal

term, the letters being left in their natural order, yields a term of

the expansion, since it contains one element and onl}' one from

each row and each column.

Therefore all the terms of the expansion can be obtained by

forming all possible arrangements of subscripts in the principal

term.

We shall use the symbol An to indicate our determinant of

order n. Then we can write the equation

A„ = S ±ai&2C3 ' In, (^ = sigma)

where the symbol S (sign for a sum) means that we are to form

the algebraic sum of all terms which may be formed from the term

written by forming all possible arrangements of the subscripts;

the signs of the terms so formed remain to be determined.

245. Number of Terms in the Expansion of A„.— The num-

ber of terms in the expansion of a determinant of order n is

1 X 2 X 3 X • • • X n, or |^-

Proof. We need only show that the number of possible arrange-

ments of the subscripts 1, 2, 3, . . . n, is jw.
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Starting with the natural order, and interchanging 1 in turn

with 2, 3, . . . , n, we form the n arrangements

1 2 3 ... n,

2 1 3 ... w,

2 3 1 ... n,

2 3 4 ... 1.

In any one of these, keep 1 fixed in its position, and interchange 2

with 3, 4, . . . , n. In this way we form n — \ arrangements in

which 1 occupies a given place. Treating each of the n arrange-

ments written above similarly, we obtain altogether n (n — 1)

arrangements. Each of these gives rise to a group of n — 2 ar-

rangements, including itself, by interchanging 3 with 4, 5, . .
.

',
n.

Hence we obtain n{n—l){n — 2) arrangements. Proceeding simi-

larly we find the total number of arrangements to be |n.

246. Signs of the Terms in the Expansion of A„.

Inversion. An arrangement of the numbers 1, 2, 3, . . . , n

is called an inversion. An inversion is even or odd according as

the number of times a greater number precedes a lesser number

is even or odd.

Thus, the possible inversions of 3 numbers are

123, 213, 231, 321, 312, 132;

of these the first, third, and fifth are even, the others odd.

Further, the inversion of the subscripts in the term aj})2Czdi is

even. For 4 precedes 2, 3, and 1, and 3 precedes 1, making a

greater subscript precede a lesser one 4 times.

We now define the sign of each term of the expansion of A„ hy the

rule that the sign shall he plus when the inversion of the subscripts is

even, minus when the inversion is odd.

Our determinant is now completely defined.

Exercise. Write out the expansion of

fll 02 03 Cl4

bi 62 bs bi
Ai =

Cl C2 C3 Ci

di do dz d\

247. Properties of Determinants.

1. A determinant is unchanged in value when its rows and col-

umns are interchanged.
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For the expansion remains unaltered.

2. Interchanging two adjacent rows or columns changes the sign

of the determinant.

For each term of the expansion will change sign, since two

adjacent subscripts will be interchanged; hence even inversions

change to odd, and vice versa.

By repeated application of this rule it follows that if any two

rows or any two columns he interchanged, the sign of the determinant

changes.

3. If all the elements of a row or column are 0, the determinant = 0.

For each term of the expansion contains a zero factor.

4. When all the elements of a row, or column, contain a common

factor, this may he taken out and written as a factor of the whole

determinant.

For each term of the expansion will contain this factor.

It follows that, to multiply a determinant hy any factor, we need

only multiyly the elements of any row or column hy this factor.

5. If two rows or columns are alike, the determinant = 0.

For by interchanging them we would have A« = — An; .'. An = 0.

6. If the elements of two rows or columns differ only hy a common
factor, the determinant = 0.

For by taking out the common factor the two rows or columns

become equal.

7. // in the expansion of An we collect the terms which contain the

several elements of any row or column, say the jth row, we have

A„ =

ai a2 as . . . an

hi b2 hs . . . fe„

il J2 J3 jn

U h h

3\Ji -h J2J2 + • • • jnJn

Here Ji is called the cofactor of the element ji, and similarly for

/2, . . . , Jn.

8. A determinant is unaltered in value when the elements of any

row are increased hy a constant multiple of the corresponding elements

of another row. Similarly for columns.
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For suppose that we add to the elements of the first row k times

the elements of the second. We obtain the determinant

An' =
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For we have

aiAi + 02^2 + + anAn.

Replace the a's by the elements of any other row, as the second.

The result is

biAi + 62A2 + + Mn = 0.

10. If we strike out from A„ the jth row and kth column, the remain-

ing determinant, of order n — 1, is designated by A/,fc, and is called

the minor of the element standing at the intersection of the row and
the column struck out.

Thus the minors of ai, 02, and 03 in the determinant

are, respectively,

ai
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ments, one from each column and each row except the first, there-

fore Ai and Ai,i must be identical. Now interchange the first

two columns, so that A3 becomes —A3. Then

ao
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Solve for x, y, and z the system of equations

aiX-\-biy-}-CiZ = di,

d'zX + 62Z/ + C2Z = d2,

asx + hy + C32 = (Zs.'

Let the determinant of the coefficients be denoted by A, so that

tti 61 Ci

A = a2 &2 C2

as &3 C3

Let the cofactors of ai, 02, as be Ai, A2, A3 respectively.

Multiply the given equations in order by Ai, A2, A^, and add the

results. We obtain

(aiAi + 02^2 + 03^3) X +(61^1 + 62A2 + Ms) y +
{ciAi +C2A2 + C3A3) 2 = diAi + ^2^2 + dsA-i.

From (7) and (9) of (247) we see that the coefficient of x is A,

and of y and z zero. Hence we get

d]Ai -\-d2A2 + dsA:

di
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249. Exercises. Evaluate the following determinants:

1.

that

a 1 3

a + 1 2 2

a + 2 3 1

4

2 10

3 2 4

6 2 3

3 1 1

1 5

2 -2 1

4-5

10,

2.
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19. Give three sets of values of x, y,

z which satisfy the equation

X y z I

3 1-21
1-221
•14 11

20. As in 19, for the equation

y z \

Ci a2 Qi 1

62 bs

C2 C3

21. cos (x + y) =

23. cos 2 X =

24.

26.

Prove the following identities

cos X sin X

sin y cos y

cos X sin X
I

I
sin X cos X

I

a be
sin X sin y sin 2

cos X cos 2/ cos z

6in2x cos^x 1

8in2 y cos2 ?/ 1 =0.

22. sin (x — y) =
sin X cos X

sin u cos w

a sin {y — z) + b sin (2 — x) + c sin (x — y).

sin2 z cos2 z

cos X sin X cos x cos x (s

cosy

27.

+ sin z)

sin y cos y Cos ?/ (sin x + sin z)

cos z sin z cos z cos 2 (sin x + sin y)

sin X sin 2 x sin 3 x

sin2 X sin2 2 x 8in2 3 x

sin 2 X sin 4 X sin 6 x

= 0.

2 sin X sin 2 X sin 3 x (sin 2 x X).

28. Show that

a + a' b + b' c -\-
c'

d e f

g h k

29. Show that the equations

-4X + 2/ + 2 =

are satisfied by
I 1 1

X : y : z =
\
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31. Show that the equations \3x + 5y + Qz = 0,

[4:x + 6y + 7 z = 0,

are eatisfied hy x : y : z = 1 :
— 3:2.

Solve the following systems of equations:

32. 2 x + 3 y - 4 3 + 7 = 0, 34. - r + s + t + u = 4,

7a;-4y-l=0, r - s + t + u = S,

9x-4z + l=0. r + s - t + u = 2,

33. 20 u + 2 r - 7 = 0,
r + s + t-u = l.

4f + 5w;-l=0, Z5. 2x - y -3z + w = I, .

4w-3w + 2 = 0. x + 2y + z-w = 2,

Sx-Sy-z + 2w=-l,
-x-y + 2z-Zw = 0.

36. k + l + m-2n = l,

2k -l + 2m - 4:n =2,

-k + 2l + 3m-6 7i=-2,

k -l + 4:m -8n =-1.
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Polar Coordinates. Complex Numbers. DeMoivre's
Theorem. Exponential Values of sin x and cos x.

Hyperbolic Functions

250. Polar Coordinates.— We have made repeated use of the

system of rectangular coordinates, in which the position of any

point in the plane is defined by its abscissa and ordinate. A second

system of coordinates defines the position of a point with reference

to a single fixed line, called the initial line, and a fixed point on this

line, called the origin or pole.

In the figure, let OX be the initial line and the pole. We shall

consider OX as the positive direction of the initial line. Let P
be a point in the plane to be

considered. The position of

P is then fixed by its distance

OF = r from 0, called the

radius vector, and by the

angle XOP = 6, called the

vectorial angle. Then r,

are called the polar coordinates of P, and the point is indi-

cated by {r,d). Similarly Pi is the point (ri, ^i). The coordi-

nate d is positive when measured counter-clockwise from OX;
r is positive when measured from along the terminal side of 0;

it is negative when measured from along the terminal side of d

produced back through 0. Thus the points (5, 30°) and ( — 5,

210°) coincide. Similarly with (135°, -3) and (-45°, 3).

Exercise. Plot the following points:

(45°, 1); (45°, -1); (60°, 3); (-60°, 3); (^. 4); ^- "^-,
-ITT Z
6"'

3

Calculate the rectangular coordinates of each of these points, taking as

origin and OX as the x-axis.

231
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251. Relation between Polar and Rectangular Coordinates.—
Let be the origin and OX the initial line of a system of polar

coordinates (figure). Let OX and OY
be the axes of a rectangular system of

coordinates. Then

= Va;2 + 2/2,

^ X = r cos d,

ly = rsin^; = tan

252. Curves in Polar Coordinates.

— When r and 6 are unrestricted, the

point (r, 6) may take any position in the plane. When r and 9 are

connected by an equation, the point (r, 6) is in general restricted

to a curve, the equation between r and 6 being called the polar

equation of the curve.

Example 1. Trace the curve whose polar equation is r = sin d.

Assume a series of values for 6, calculate the corresponding values of r and
plot the points whose coordinates are corresponding values of r and 6.

0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°,

0, .5, .87, 1.0, .87, .5, 0, -.5, -.87, -1.0,

The graph is shown in the figure.

For values oi > 360°, and for

negative angles, no new points are

obtained. The curve is a circle,

with radius = ^.

Example 2. Trace the curve

r =-2 0.

Here is understood to be in

radians.

300°

-.87,

330°,

-.5,

360°.

0.

r = 0,-, 7r,-j,2^,..

For negative values of we

get corresponding negative

values of r. The curve is

the double spiral in the fig-

ure, the branches shown by the full line and the dotted line being obtained

from the positive and the negative values of 6 respectively.
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Exercises. Trace the following curves:

1. r = 2 sin d. 6. r = sin- 1 e.

2. r = cose

.

6. r = tan- 1 e.

3. r = tan d. 7. rO = 1.

4. r = sec 0. 8. r = 2*.

10. r = logio 6.

11. r = 4.

12. 9=^

71/

253. Complex Numbers.— Let a and h denote any two real

numbers and i = V— 1. Then the quantity a + ih is called a
complex yiumher. It may be considered as made up of a real

units and h imaginary units, a X 1 + 6 X t.

Real numbers can be represented by points on a straight line.

To represent complex numbers ^y
geometrically, we require a plane.

Let OX and OF be a system of

rectangular axes, and P a point

in their plane having coordinates

(a, 6) (figure). Then P is called

the representative point of the

complex number a -\- ih.

When 5 = 0, P lies on the a;-axis, and the complex number
reduces to a real number. Thus all points on the x-axis corre-

spond to real numbers, and this

line is called the axis of real

numbers.

Let P (figure) be a point {x, y)

in the plane, and let z be the com-
plex number represented by P.

Then
z = oc-^iy.

Now take OX as the initial line and as the pole of a system of

polar coordinates. Let the polar coordinates of P be (r, d). Then

Hence

X = r cos 6; y = r sin

z = X -\- iy = r (cos 6 -^ i sin 6)

.

Here r is called the modulus and d the angle of the complex
number z.
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When r is fixed, and 6 is changed by integral multiples of 2 tt,

we obtain a set of complex numbers of the form,

z = r [cos {d+2mv) -\-i sin {d-\-2 mr)\)

n = Q, ±1, ±2, . . . .

All these numbers have the same representative point.

254. Addition of Complex Numbers.— The sum of two com-

plex numbers,

z = x-\-iy and z' = x' + iy',

we define by the equation

z -\-
z' = {x -\- x') + i (y + y').

We proceed to consider this

sum geometrically. Let P, P'

(figure) be the representative

points of z, z' respectively. On
OP and OP' as adjacent sides con-

struct the parallelogram OPQP'.

Then Q is the representative point

of z -\- z' . For the coordinates of

Q are {x -\- x'
, y + y').

The difference of the two complex numbers z and z' we may
define by the equation

z- z' = {x- x') +i{y - ij').

Exercise. Give a geometric construction for the representative point of

z — z'

.

255. Multiplication of Complex Numbers.— The product of

the two complex numbers,

z = r (cos d -\-i sin 6) and z' = r' (cos 6' + i sin 6'),

we define by the equation

zz' = rr' (cos 6 -\- i sin 6) (cos 6' -{- i sin 6').
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Multiplying out the product of the two binomials wc find

zz' = rr' [cos d cos 6' — sin d sin 0' + i (sin d cos 6' -\- cos 6 sin d')\

= rr' [cos {e + 0') + i sin (9 + ^')]-

Therefore the modulus of the product zz' equals the product of the

moduli of z and z', and the angle of zz' equals the sum of the angles

of z and z'.

By repeating this process we find

zz'z" . . . = rr'r" • • • [cos {9 -\- 6' -\- 6" + • • -
)

-j-ism{d-\-d' -{-d" + • • •
)]

for any finite number of factors z, z', z", ....
When the factors are all equal this reduces to

z" = r" (cos nQ + i sin uQ),

n being a positive integer.

Exercise. Show that the above definition of the product zz' is the same as

zz' = xx' - yy' + i (xy' + x'y),

where z = x -\-iy and 2' = x' + iy'-

256. De Moivre's Theorem.— When r = \, then z = cos 6 +
i sin 6. Hence by the above result we have

(cos 6 + i sin 6)" = cos nS + * sin «6.

This equation contains what is kno\\Ti as De Moivre's Theorem.

257. Definition of z^\— Let p be any real number, positive or

negative, rational or irrational. Then by analogy with the result

for 2'' when n is a positive integer, we define zp by the equation

zP = rP (cos i>6 + i sin p^),

where z = r (cos 6 -\- i sin 6).

Then, if q also be real, we have

zi = 7-9 (cos qd -\- i sin qO),

and
^v^q ^ ;.p+g[cos {p-\-q)d + i sin (p + q)d]= z^^^.
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Hence the rules for exponents will be the same when the base is a

complex number as when the base is real.

Examples.

1. Find the modulus and angle of 2 = 3

-4i.

Here 3 = r cos 0; — 4 = r sin 0.

r = V32 + 42 = 5; tan » =^

.

i-t)-

The angle lies in the fourth quadrant.

2. Express 2 (cos 150° - i sin 150°) in the

form X +iy.

2 (cos 150° ism 150°) =2( -^ V3 -^

3. Find the value of (1 + i)^ (2-3 i).

{l+iy = l+2i + i^ = 2i.

(1 + i)M2 - 3 i) = 2 i (2 - 3 i) = 4 i - 6 i2

:

V3-i.

+ 4 i.

Exercises.

1. Find the modulus and angle of

1-i; 4 + 3i; -5 + Hi; 2i; 2; (l+i)(l-t);

3V3+3i; (3V3-3i)^ {l +i^3)(\/S +i).

Give figure for each case.

2. Find the value of :

(l+i)3; (l-i)i; (l+i)2(l+2i)2; (3-3i)2 (VS + O^ (l-i^/s)\

258. Theorem. If P and Q are any real quantities and if

pj^iQ= 0, then P=0 andQ = 0.

Proof. By hypothesis, P + iQ = or P = - iQ.

Squaring, p2 = _ Q2,

Now P2 and Q^ must be positive, hence the last equation states

that a positive quantity equals a negative quantity. This is

impossible unless both quantities are zero.

P = and Q = 0.

This theorem is used to replace a given equation of the form

P + tQ =

by the equivalent equations

p = 0; Q = 0.
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As a corollary we have, if

P-\-iQ = P' + iQ',

then P = P' and Q = Q'.

For the given equation is equivalent to (P — P') -\-i{Q — Q') = 0.

259. The nth Roots of Umt^— To solve the equation

X" - 1 = 0, or X" = 1,

replace 1 by its value cos 2 kw + i sin 2 kir, k being an integer.

We obtain
re" = cos 2kT -\- i sin 2 kir.

Jaking the nth roots of both members we have, by putting P = -

in (257),
2k7,

,
. . 2kir

X = cos h 1 sm
?i n

Here fc may be any

integer; letting k

= 0, 1, 2, . . .

n — 1, we obtain n

distinct values of

X, that is, n dis-

tinct nth roots of

1. For other values

of k we obtain the

same roots over

again.

Geometric Rep-

resentation of the

nth Roots of Unity.

— The nth roots of

1 are,

fc = 0; Xi = cos + i sin 0=1,

7 1
27r

,
. . 27r

fc = 1 ; Xo = cos h * sm—

>

n n

TO 47r , . . 47r
A; = 2: Xs = cos h ^ sm— >

2 (n - 1) TT
,

. . 2 (n - 1) 7r

fc = n — 1 ; a-^ = cos^ 1- i sm
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The representative points of Xi, X2, xs, . . . x„ are ob-

tained as n equally spaced points on a circle of radius 1, the

coordinates of the first point being (1,0) (figure).

To obtain the nth roots of any number a, we need only multiply

one of its arithmetic nth root by the nth roots of unity.

Example. Find the cube roots

of unity.

These are given by

x = cos—5—hisin-i^; fc = 0,1,2.
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This equation has the form

P + iQ = P' + iQ'.

Hence by the corollary in (258) we have

cos nQ = cos" d - ^ |~ cos"-- 6 sin^ d -\- - - - .

sin nd = n cos"- ^ g sin - "^ ^"^ ~
j^^'^

~ ^^
cos"-^ 6 sin^ g + • • -.

sin 4 9 = 4 cos3 sin i9 - 4 cos sin^ 0.

cos 5 19 = cos5 0-10 cos3 d sin2 e + 5 cos ff sin^ e.

Exercises. Expand in powers of sin 9 and cos 9:

1. sin 39; 3. cos 40; 6. sin 60;

2. cos30; 4. sin 5 0; 6. cos70.

261. Exponential Values of sin £c and cos a?.— We have the

expansions, (219),

e^ = l + a: + | + |+ • • •
;

sinx = a:-^ + ^- • • •
,

cosx=l-|2 + |4- • • • •

In the first series replace x by ix and define the result to be e*^:

noting that

i2 = _ 1 ^-3 = - i, i^ = 1, • - -
,

we obtain

eix = 1 +
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From these equations we find

3 i

These formulas are useful in many appHcations of the trigono-

metric functions.

Exercises. Using the exponential values of sin x and cos x, show that:

1. sin2 X + cos2 X = I. 3. cos 2 a; = cos^ x — sin2 x.

2. sin 2 X = 2 sin x cos x. 4. cos* x — sin'* x = cos^ x — sin^ x.

262. The Hyperbolic Functions.— In the expansions for sin x

and cos x given at the beginning of (261) replace x by ix and define

the results to be sin ix and cos ix respectively. We obtain

smix

x^
cos ix = 1 +^ + T^ +. • . • .

These equations we consider as defining the sine and cosine of

the imaginary quantity ix.

Multiply the first equation by i and subtract the result from the

second. We obtain

cos ix — i sin ix = e*.

Change a; to —a:;

cos ix -\- i sin ix = e~*.

(Note that sin ix = - sin (- ix) by the definition of sin ix.)

Combining the last two equations by addition and subtraction,

we find

cos IX = ^ ; sm IX = I
2 ' 2

We now define

Hyperbolic cosine of x (= cosh x) = cos ix;

Hyperbolic sine of x ( = sinh x) = - sin ix. ^

Then

cosh a? = , sinh a? = ^

—
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These functions are related to the hyperbola somewhat as the

circular functions to the circle.

The remaining hyperbolic functions are defined by the equa-

tions

sinh a? . ^, 1 .

coth a? = ::—;— ;
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Permutations. Combinations. Chance

263. Permutations.— A -permutation is a definite order or

arrangement of a group of objects, or of part of the group*.

Let there be a group of n distinct objects. The number of

possible arrangements, taking r of these objects at a time is called

the number of permutations of n things r at a time, and is denoted

by „P,.

Theorem 1. The number of permutations of n things r ata time is

«Pr ^ n{n-l) . . . (»i - i> 4- 1).

Proof. Evidently „Pi = n.

Now with each of the n objects we may pair any one of the remain-

ing n — 1 objects.

Hence „P2 = n(n — 1).

With each one of these n{n — 1) permutations containing 2 objects

we may associate one of the remaining n — 2 objects.

Hence nPz = n{n — I) {n — 2).

Proceeding in this way we obtain the formula stated.

When r = n we have

nPn =
I

n.

Exercises.

1. How many numbers of four figures each can be formed from the digits

1, 2, 3, 4 ?

2. How many 3-figure numbers can be formed from the digits 1, 2, 3, 4, 5?

y; 3. How many numbers greater than 1000 can be formed from the digits

i, 3, 5, 7, 9?

4. How many changes can be rung with 8 bells, 4 at a time?

264. Combinations. — A combination is a group of objects,

without reference to their arrangement.
242
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The number of different groups or combinations of n objects,

each group containing r objects, is called the number of combina-

tions of /) things r at a time, and is denoted by „Cr.

Theorem 2. The number of combinations of ?i things r at a

time is

_ „F,. _ n(n -1) • • {n - r + 1)

Proof. Suppose all the combinations of the n things r at a time

to be written down. Each group so written will yield, by per-

muting its objects in all possible ways, |_r permutations. Hence

there are \r times as many permutations as combinations, or

\r^nCr = nPr = ^ (n - 1) . . . (^i - r + 1).

Hence the theorem.

Exercises.

1. How many triangles can be formed from 6 points, no three points being

collinear?

2. How many tetrahedrons can be formed from 12 points, no four points

being coplanar?

3. How many committees of 3 persons each can be formed from a club

of 10 persons?

4. Show that nCr = rvCn-r-

(This is a convenient formula when r is nearly as large as n. It is then

shorter to calculate nCn-r-)

6. Show that „Co + nCl + «C2 + • • • + nCn = 2".

(Expand (1 + x)" and put x = 1; nCo is defined to be 1.)

6. How many committees, consisting of from 1 to 9 members, can be

formed from a club of 10 persons?

7. Find the value of 20C18.

265. Theorem 3.— The number of permutations of n things n at

a time, when p things are alike, is

\n

\P

Proof. Let P be the number of permutations sought, and sup-

pose them written down. If now the p things in question were

unlike, by permutating them among themselves each of the P
permutations would yield \p permutations; the total number of

permutations so formed would be |^ P and must equal n^n or [n.

Hence the theorem.
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Similarly, the number of permutations of n things n at a time,

when p things are all of one kind, and g of a second kind, will be

\n

\p\q

and so on.

266. Exercises.

1. How many permutations of seven letters each can be formed from the

letters of the word "arrange"?

2. How many permutations of 11 letters each can be formed from the

letters of the word "Mississippi"?

3. How many words, each containing a vowel and two consonants, can

be formed from 4 vowels and 6 consonants?

4. How many even numbers of four figures each can be formed from the

digits 1, 2, 3, 4, 5, 6?

5. How many elevens can be chosen from 20 players if only 6 of the 20

are qualified to play behind the line?

6. As in 5, if in addition, only 2 men are qualified for center.

7. How many sums can be formed with one coin of each denomination,

from a cent to a dollar?

8. As in 7, except that there are two coins of each denomination.

9. If two coins are tossed, in how many ways may they fall?

10. As in 9, for 10 coins.

11. If two dice are thrown, in how many ways may they turn up?

12. As in 11, for 3 dice.

267. Probability or Chance.— If a bag contains 4 white and

3 black balls, and a ball is drawn at random, what is the chance

that it be white ?

In order to solve this problem we first define chance or proba-

bility.

Definition. The measure of the probability of the occurrence of

an event is taken to be the quotient,

number of favorable ways

total number of possible ways

In the problem above, since there are 7 balls altogether, there are

7 possible ways of drawing one ball ; of these 4 are favorable, since

there are 4 white balls. Hence the chance that a white ball be

drawn is = •

^
3

Similarly the chance for a black ball is =•



2G7] . CHANCE 245

If an event can happen in a ways, and fail in b ways, then, by the

definition, the chance that it will happen is —r-^, and that it
a + 6

will fail is
a + 6

Since the event must either happen or fail, the probability

for which is —-^ -j :—7- = 1 , we have 1 as the mathematical
a-\-b a + 6

symbol for certainty.

If p is the probability that an event will happen, 1 — p is the

probability that it will fail.

Example 1. From a bag containing 4 white and 3 black balls, 2 balls are

drawn at random.

(a) What is the chance that both be white?

Number of favorable ways: 4C2 = 6.

Number of possible ways: 7(^2 = 21.

6 2
Hence the required chance is: p = ^ = ^•

(6) What is the chance that at least one be white?

Favorable cases: both white, 4(^2 = 6;

one white, other black, 3 X 4 = 12.

.'. Total number of favorable cases is 18.

Number of possible cases, as before, 21.

18 6
Hence ^ ""

21
"" 7

'

A shorter method is as follows: The probability that both balls be black

is ?^ = — = -
. Hence the chance that at least one be white is 1 - = =

^^
•

7C2 21 7 < '

Exam-pie 2. From 12 tickets, numbered 1, 2, . . . 12, four are drawn at

random.

(o) What is the probability that they bear even numbers?

Since 6 tickets bear even numbers, the number of favorable cases is 6C4.

The total number of ways of drawing 4 tickets from 12 is 12C4. Hence

= ^= 6-5-4.3 ^2
^ 12C4 12-11 -10 -9 33'

(6) What is the chance that two bear even, the other two odd numbers?

We can select two tickets bearing even numbers in gG ways; also two bear-

ing odd numbers in 6^2 ways. Combining any one of the first with any one

of the second gives 6C2 X &C2 favorable ways. Hence

6C2 X 6C2 5
V

12C4 11
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268. Exercises.

1. If 5 coins are tossed, what is the chance of three heads?

2. If 5 coins are tossed, what is the chance of at least two heads?

3. If 3 balls are drawn from a bag containing 5 white and 4 black balls,

what is the chance that all three are white?

4. In exercise 3, what is the chance of drawing 2 white balls and one

black ball?

5. In exercise 3, what is the chance of drawing at least one white ball?

6. What is the chance of two sixes in a single throw of two dice?

7. What is the chance of throwing three sixes in a single throw with three

dice?

8. Three dice are thrown. What is the chance that the sum of the

numbers turned up is 11?

9. As in 8, except that the sum is to be 7.

10. Six cards are drawn from a pack of 52. What is the chance of three

aces?

11. Six cards are drawn from a pack of 52. What is the chance that all

are of the same suite?

269. Compound Probabilities.

Definition. Two events are said to be independent when the

occurrence of one does not affect that of the other.

Theorem 4. The chance that both of two independent events shall

happen is the product of their separate probabilities.

Proof. Suppose the first event happens in a ways and fails in

h ways, out of a a + 6 possible ways, and that the second happens

in a' ways and fails in b' ways, out of a total of a' + 6' ways.

Combining each of the a favorable ways of the first event with

each of the a' favorable ways of the second, we have aa' favorable

cases. The total number of possible cases is (a + b) (a' + 6')-

Hence

_ ^^' _ ^ V ^'

^ ~
(a + 6) (a' + b')

~ M^ a^T&^

which is the product of the separate probabilities of the two events.

As an immediate extension, we have the

Theorem 5. // the probabilities of several independent events be

Pi, P2, ' ' • Vnj ihe probability that all will happen is

P =Pl Xp-iX ' ' ' XPn.

Example. From a bag containing 4 white and 3 black balls, 2 balls are

drawn in succession. What is the chance that both are white?
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On the first drawing the chance for a white ball is ^ ; on the second, ^ . The

probabihty of both events is therefore

7^6 7

Definition. Two events are said to be dependent when the

occurrence of one of them affects that of the other.

Theorem 6. Of n dependent events, let the chance that the first

will happen he p\, the chance that the second then follows he p2, that

the third then follows he ps, and so on. The chance that all these

events shall happen is then

P = PiXp2Xp3 X • ' Pn

This is an immediate consequence of the preceding theorem.

Theorem 7. If p be the chance that an event will happen in one

trial, the chance that it will happen just r times in n trials is

Proof. The chance that r trials out of n shall succeed is p*",

and that the other n — r trials shall fail is (1 — pY'"". Hence the

probability of success in r particular trials and of failure in the

n — r other trials is p" {\ — pY~\ But of the n trials, any r

may be the successful ones, which gives „Cr possibilities, each

having a probability p'' (1 — ?))""'". Hence the result stated.

Examples.

1. In a class of 3 students, A solves on the average 9 problems out of 10,

B 8 out of 10, C 7 out of 10. What is the chance that a problem, presented

to the class, will be solved?

The problem will be solved unless all three students fail, the probability

for which is

10 10 10 500

Hence the chance that the problem will be solved is

_ A^MZ
500 500'

2. Two bags each contain 5 black balls, and a third bag contains 5 black

and 5 white balls. What is the chance of drawing a white ball from one of

the bags selected at random?
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The chance that the bag containing white balls be chosen is 5 . The chance
1

"^

that a white ball be now drawn from this bag is ^ . Hence the probabihty

that both events happen and that a white ball be drawn is

3 2 6

3. A coin is tossed 10 times. What is the chance for just 3 heads?

The probability of a head in one trial is ^ • Hence

nCrV^ (1 -p)"-'- = loCsQJ^l -0 =

270. Exercises.

128'

1. Three hats each contain 5 tickets, those in two of the hats being num-

bered 1,2, ... 5, and those in the third hat being blank. What is the chance

of drawing a ticket bearing an even number from one of the hats selected at

random?

2. If in exercise 1 two tickets be drawn from a hat chosen at random,

what is the chance that both bear even numbers?

3. If each of two persons draw a ticket from one of the hats in exercise 1,

the first ticket being replaced before the second is drawn, what is the chance

that both persons draw the same number? What is the chance that both

draw blanks?

4. If a coin be tossed 10 times, what is the chance for at least 7 heads?

5. How many different sets of throws can be made with a coin, each set

consisting of 5 successive throws?

6. The chance that a person aged 25 years will live to be 75 is
2;|

.
What is

the chance that, of three couples married at the age of 25, at least one shall

live to celebrate their golden wedding?

7. A bag contains 10 white, 6 black, and 4 red balls. Find the chance that,

of three balls drawn, there shall be one of each color.

8. A gunner hits the target on an average 7 times out of 10. What is

the chance that 5 consecutive shots shall hit the target?

9. Two dice are thrown. Find the chance that the sum of the numbers

turned up shall be even.



CHAPTER XIX

Theory of Equations

271. We shall refer to the equation

(1) i^o-^" +i>i^"-'+i>2x"-^+ • • • +i>„-ia7+i>„ =0

as the standard form of the equation of « th degree
; pox" is called

the leading term and p„ the constant (or absolute) term.

The coefficient of the leading term may be made equal to unity

by dividing the whole equation by this coefficient.

When all the terms written in equation (1) are present, the

equation is said to be complete; when one or more terms are

absent, the equation is said to be incomplete. An incomplete

equation may be made complete by supplying the missing terms

with zero coefficients.

We shall represent the polynomial forming the left member of

equation (1) hyf{x); f (a) shall denote the value of this poly-

nomial when X = a,f (b) the value when x = h, and so on.

A root of an equation is a value of x which satisfies the equa-

tion; hence a is a root of the equation / (x) = if / (a) = 0.

In the present chapter we shall consider methods of finding the

roots of the equation / (x) = 0.

272. Factor Theorem. — If a is a root of the equation f (x) = 0,

thenfix) is divisible by (x - a), and conversely.

Proof. Divide / (x) by {x - a) ; let Q be the quotient, R the

remainder. Then

f{x) = {x-a)Q + R.

Putting X = a, we obtain R = 0, since / (a) = by hypothesis.

Hence / (x) is divisible by {x - a) without a remainder.

Conversely, assume

f(x) = (x-a)Q.

Fxit x = a and we have / («) = 0; hence a is a root of / (x) = 0.

[See also (11), (f).]

249
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273. Depressed Equation.— When a is a root of the equation

/ (x) = 0, we may write

f(x) = {x-a)Q.

Any other value of x which reduces / (x) to zero must also reduce

Q to zero, and is therefore a root of the equation Q = 0.

. But if/ (x) is of degree n, Q will be of degree n — 1. Hence when

one root of an equation is known, the other roots may be found

by solving an equation of degree one less than that of the given

equation, and whose left member is found by dividing the left

member of the given equation by {x — the root).

The new equation is called the depressed equation.

Exercises. Show that each of the following equations has the root indi-

cated, and find the other roots:

1. x3 - 9x2 + 26a; - 24 = 0; x = 2.

2. x4 + 3a:2_8x -24 = 0; x = - 3.

3. 3x3-14x2 + 17x-6 = 0; x = f

.

274. Number of Roots. — We assume that every equation of

the form (1), (271), has at least one root, that is, there exists at

least one value of x, real or imaginary, which satisfies the equation.

It can then be shown that an equation of the nth degree has just

n roots.

For, let ai be a root. Form the depressed equation by removing

from /(x) the factor x - ai, and let the new equation, of degree

n — 1, he fiix)= 0. By the above assumption, this equation

has a root, say 02. Removing from /i(x) the factor x — a-y, we

obtain a new equation, /2(x)= 0, of degree n - 2, and so on.

After n — 1 steps, by which n — 1 roots are removed, we have

an equation of the first degree which gives one more root. Hence

there are just n roots.

275. To Form an Equation Having Given Roots.— Let it be

required to form an equation whose roots are Oi, a-z, as, . . . an-

Obviously the required equation is

Ai,x- ai)(x - a2){x - a^) . . . {x - aj = 0,

A being an arbitrary constant.

Exercises. Form the equations whose roots are:

1. 1, 2, 3. 3. 2, 2, -2, 0. 5. ±1, h i-

2. l!-l, 2. 4. -1,-2,-3,-4. 6. -h h i-

(Write the results from exercises 5 and 6 with integral coefficients.)
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276. Relations between Coefficients and Roots. — In the case

of 2, 3, and 4 roots respectively we find on expanding,

(.r — ai){x — ao) = x^ — (ai + 02) -k + ai«2.

{x - ax){x- a2){x - 03)= x^ -(oi + a-z -{- a^) x-

-{-{aiao -\- aoaz -\- a\a:i)x — aiaoaz-

{x - ai){x — a2)(,x - as) (a; - a^) = x"^ - (01+0-2 + 03 + 04)^3 +
(• • •) x^ —{•) x -\- 01020304.

We here observe three facts, namely

:

1. The coefficient of the leading term is unity;

2. The coefficient of the second term is the negative sum of the roots;

3. The constant term is the product of the roots, plus when the

number of roots is even, minus when odd.

We shall show by induction that these results are true in general.

Assume them to be true for n — 1 roots; then if the equation

whose roots are Oi, 02, . . . o,j_i, be

a;'^-i+5ix"-2+ . . . +g„_i =0,

we have by hypothesis,

9i = -(ai+«2+ • • • +an-i); gn-i = (-l)""^aia2 • . . a„.

Multiplying the above equation by {x — a„), which introduces

the new root o„, we find on collecting in powers of x:

x" -{-(qi - a„) a;"-i + • • • - o„9„_, = 0,

or, X" -(oi 4- 02 + • • • + a„_i + a„) x"- 1 + . . .

+ (- l)"oia2 . . . o„_iO„ = 0.

Hence if the results are true for the case of n — 1 roots, they

hold also for n roots. But they are true for 4 roots, hence also

for 5, hence for 6, and so on.

Exercise. Show by induction that the coefficient of the third highest power

of X equals the sum of the products of the roots taken two at a time.

277. Fractional Roots.— An equation with integral coefficients,

in ivhich the coefficient of the leading term is unity, cannot have as

a root a rational fraction in its lowest terms.
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Proof. Assume that the equation

has integral coefficients and that one of its roots is 7 ' where a and

h are integers, relatively prime. Putting x = rwe have,

Multiplying through by 6""^ and transposing,

Here we have a fraction in its lowest terms equal to an integer,

which is impossible. Hence y cannot be a root.

Corollary. Any rational root of an equation whose coefficients are

integers and whose leading coefficient is unity must he an integer.

278. Imaginary Roots.— // the general equation of nth degree,

with real coefficients, has an imaginary root a + ib, then also the

conjugate imaginary, a — ih, is a root.

Proof. Assume that a + ih is a root of the equation

f{x)=X''-\-piX''-'^-{-p2X''-^-\- • • + p,^.iX + Pn= 0.

Then

(a + ib)^ + Pi{a + ih)''-'' + P2 (a + ih^-^

+ . . • +p„_i(a + i6)+p, = 0.

Expanding the binomials, reducing all powers of i to ± 1 or ± i,

and collecting terms, we have a result of the form

f{a + ih) =P-\-iQ = 0.

Hence P = and Q = 0. (258.)

Now substitute a — ib for x and proceed as before. The result

will be

/ (a - ih) =P- iQ,

since the only difference is in the sign of i. But P = and Q = 0,

hence P — iQ = 0, or /(a — ib) = 0. Therefore a — ib is a root.
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We may state our result as follows: Imaginary roots, if present

at all, always occur in conjugate pairs.

279. Multiple Roots.— When an equation has two or more roots

equal to the same value " a," then " a " is called a multiple root.

Suppose that the equation

f{x)=0

has m roots, each equal to a. Then

f{x) = {x-arQ,

where Q is a new polynomial.

Letf'ix) denote the first derivative of f (x) with respect to x;

then

f(x) = (x- a)-^ + m (x - ar-^Q.

This shows that/'(x) contains the factor {x - a)'^''^, and hence

that, if f{x)=0 contains a root "a" repeated m times, f'{x) = will

contain this root repeated m— \ times; f {x) andf'{x) will then have

the factor {x — a)"*~^ in common.

Hence we have the following rule for finding multiple roots of

the equation / {x) = 0.

Find the H. C. F. (13) of f {x) andf'{x); to a factor {x - a^-"^ of

the H. C. F. corresponds a factor {x — a)*" of f{x).

280. Exercises. Test for multiple roots and find all the roots

of the equation.s:

1.
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I. To change the signs of the roots.

Put X = — y. We obtain,

vq{- yY+ vxi- yY-'+V2{- yT-'-+ • • • +P«-i(-2/)+Pn=o,

or, on multiplying through by (— 1)",

Por-Piy"-' + ?>2r-'- • • • +(-i)"-i?>n-iy+(-irPn=o.

Hence, to change the signs of the roots, change the signs of alternate

coefficients, beginning with the second term.

II. To multiply the roots by a constant factor, m.

Replace xby— (so that i/ = mx).

Then

-(iT+-(r'+-(»r+ •••+--©+-=«•

Multiplying through by m", we have.

Hence, to multiphj the roots by a constant factor m, multiply the

coefficients in order, beginning with the second, by w, m^, m^, . . . m".

When w = — 1 we obtain the preceding rule for changing the

signs of the roots.

III. To increase the roots by a constant quantity, fi.

Replace xhy y — h(so that y = x -]- h). Then

Po (y - hr + Pi (y - hr-' + P2 (y-hr-^+ •

.

+ p„_i(t/-/o + p. = 0.

Expanding the binomials and collecting in powers of y, we

obtain a result of the form,

We shall now show how to obtain the coefficients Pi, Po, • • • Pn-

Replacing y in the last equation by x -\- h, the result must be

the original equation, / (x) = 0. Hence

fix) = po(x-{-hr + Pi{x + hr-'-\-P2(x + hr-^--\- • .

+ P„_i(.r+/0+P..

This shows that if / (x) be divided hy x -\- h, the remainder is P„.

If the quotient be divided hy x -\- h, the remainder is P„- 1 ; divid-

ing the second quotient by {x + /i), the remainder is Pn-2, and so on.
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Hence, to increase the roots of the equation by h, divide f (x) by

X -\- h, then divide the quotient by x -\- h, divide the new quotient by

X + h, and so on. The successive remainders are, in order,

Pji, Pn-l, Pn P\.

A concise method for performing the required divisions will be

explained in the next article.

282. Synthetic Division. — When h and the coefficients po,

Pi, p2, • • • Pn are integers, the work of dividing f (x) may be

performed by the method of synthetic division. We shall illustrate

this by increasing the roots of the equation

8x-15 =

by 2.

Performing the first division at length, we have:

x^+Ox^ -8x- 15

x3 + 2a;2

X +2
x'^ — 2x — 4 quotient.

-2x2
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Dividing the quotient by a; + 2 we have,

1-2-4
I

+2
+ 2-8

2nd quotient 1-41 + 4 remainder.

Dividing the second quotient by x + 2 we have,

1 -4
I

+2
+ 2

3rd quotient 1 1

- 6 remainder.

The whole operation may now be written thus:

1 + 0-8-15
1
+2

+ 2

1-2
+ 2

7 1st remainder

1-4
+ 2

+ 4 2nd remainder

ij — 6 3rd remainder.

Then the transformed equation is:

a:3 - 6 a;2 + 4 X - 7 = 0.

To diminish the roots of an equation by h, proceed as above

with X — h in place of x -\- h. As an example, we diminish by 4

the roots of the equation

a;4 - 5 a;3 + 7 a;2 - 17 a; + 11 = 0.

1- 5+ 7-17 + 11 [-4
-4+4
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In using the method of synthetic division note that the coeffi-

cient of the leading term remains unchanged.

283. The graph of the equation y = /(x), when

f{oc) = p^Jc"-}-2>ix"-^-\-2>'i^"~^-^ ' ' ' +i>«-i-^+/>«.

To construct the graph which shall

represent the fluctuating values of y

as X varies, we assume a series of

numerical values for x, calculate the

corresponding values of y, and plot

the points {x, y). On drawing a

smooth curve through these points,

we obtain a graph such as that in

the figure, which represents the equa-

tion

y = x^ — 2x — 1. y = 3? -

Here a set of corresponding values of x and y are

:

x= 0, 1, 2, . . . ,
- 1, - 2, .

^ o l_Xm
2x

y 2,3, 0,

Since the curve crosses the rc-axis when y = 0, we see that the

abscissas of the points where the graph of the equation y = f (x)

crosses the X-axis {called the x-intercepts of the graph) are the real

roots of the equation f {x)= 0.

An inspection of the above graph shows that one root of the

equation a;^ — 2a:— 1=0 is —1, another root lies between

— 1 and 0, and the third between +1 and +2. On removing

the factor x + 1 from this equation, the depressed equation is

x^ — X — I = 0. Hence the exact values of the other two roots

are i (l ± Vs), or approximateh', +1.62 and —0.62.

284. Effect of Changing the Constant Term. — Suppose that

we add a quantity k to the constant term of / {x)^ so that the

equation

y = f (x)

becomes y = f (^) + ^>-'-

Suppose the curve y = f (x) to be plotted ; on adding k to each of

its ordinates, we obtain the graph of y = f (x) + k. That is, if
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k he added to the constant term of the equation y =f{x), the graph
is displaced vertically through the distance k, upward if k is plus,

downward if k is minus.

As an example, consider the equations

(1)

(2)

(3)

1 ^3 _
-2a; + 2,

-2a; + 4,

-2x + 6.

The graphs are shown in figure (a). The curves are of precisely

(o)
the same form, but (2) lies two
units higher than (1), and (3)

two units higher than (2).

(6)
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285. Occurrence of Imaginary Roots in Pairs. — We can now
consider article (277) geometrically. Thus in the first figure of

(284), graph (1) shows that the equation

. ^x-^ -x^ -2x-^2 =

has three real unequal roots; replacing 2 by 4, the two positive

roots become equal; that is, the equation

ia;3_a^2_2a; + 4 =

has three real roots, two of which are equal; finally on replacing

4 by 6, the two equal roots become imaginary; that is, the equation

Ix^ -x^ -2x + Q =

has one real root and two imaginary roots.

In general, by changing the constant term in f{x), the graph of

y = f{x) may be raised or lowered so that one of the "elbows "

of the curve, which at first is cut by the x-axis, will become tangent

to the X-axis, and on further changing the constant the x-axis will

fail to intersect this' elbow. Thus two real unequal roots first

become equal, then imaginary.

286. Exercises. Multiply the roots of the equation

1. x3 + .t2 -X - 1 =0 by 2;

2. a;3 _2x + l =0 by -2;

3. x3 -48x - 112 = by i;

4. x44-6x3 + 3x2 -26x -24 = by -J.

Multiply the roots of the following equations by the smallest factor which

will make all coefficients integers

6. 2;2 _|_ x + i = 0. 8. X3 - .1 X2 + .01 X = 0.

6. \ x3 - x2 + 3V =0. 9. x3 + » x2 - ,\ = 0.

7. a;2 _ i X - i = 0. 10. x4 4- 1.2 x2 - .225 x + .015 = 0.

Increase the roots of the equation

11. x3 - 3 x2 + 4 = by 2.

12. 4 x3 - 3 X - 1 = by 3.

13. x4-2x3-llx2 + 12x + 36 =0 by -2.

14. x* - 2 x3 - 39 x2 + 40 X + 400 = by -4.
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In the following equations increase the roots by a quantity such that the

term involving the second highest power of x shall disappear.

17. x3 - 3 a:2 - 6 X + 1 = 0.

18. x" - 4 x3 - 8 X + 32 = 0.

15. x3 - 3 x2 + 2 = 0.

16. x3 - 2 x2 + 1 = 0.

In the following equations change the constant so that two roots shall

become imaginary.

19. x3 - x2 - 2 X = 0. 21. x3 - 3 X - 2 = 0.

3 x2 + 3 = 0. X + 1 = 0.

Solve the following equations, given one root.

23. x3 -2x2+x -2 = 0; x=V^-
24. 2 x4 - 3 x3 + 5 x2 - 6 X + 2 = 0; x = - 2 V^.
25. x5 - 8 x3 - 8 x2 + 64 = 0; x = - 1 - V^.
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We shall proceed to obtain the root between 1 and 2.

Second Step. Diminish the roots of the given equation by the inte-

gral part of the root required (281).

1 -4+0+4 [-1
-1+3+3
-3-3
-1+2

+ 1

1 -2
- 1

^
The transformed equation is

(2) a;3 - a;2 - 5 a: + 1 = 0.

Since (1) has a root between 1 and 2, (2) must have a root

between and 1, that is, a decimal root. To make this root an

integer, we take the

Third Step. Multiply the roots of the transformed equation by 10

(281).

The new equation is

(3) x^ - 10 a:2 - 500 X + 1000 = 0.

The root of (3) between and 10 will give the first decimal of the

required root of (1). If we neglect the terms in x^ and x- in (3)

we get an approximate value, x = 2. Putting x = 2 in (3), the

left member is negative; now putting x = 1, the left member is

positive. Hence the root lies between 1 and 2, and the required

root of (1) is 1.1+ .

We now repeat these steps and obtain the first decimal of the

root of (3), which will be the second decimal of the root of (1), and

so on. Indicating the three steps in order by (a), (6), (c), we

obtain the successive decimals of the root as shown below, the

process of finding the first decimal being included for completeness.

(3) x3 - 10 x2 - 500 X + 1000 = 0.

(a) Locate the root between and 10.

Neglect terms in x^ and x^ ; then x = 2. Try this value and the

next smaller value (or larger, if the left member of (3) does not

change sign) and the root is located between 1 and 2.
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(6) Diminish roots by figure found in (a)

.

1 - 10 - 500 + 1000
|j

- 1+ 9+509
1 - 9 - 509 + 491

-1+8
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We may omit step (c) in our last operation and get the next

figure of the required root by neglecting r'^ and x- in the last

equation. This gives x = .9+, and our root is, finally,

X = 1.1939+

.

A convenient arrangement of the whole operation of finding

this root is as follows:

1-4 + + 4 |- 1

-1+3+3
3-3
1 + 2

+ 1

1-2
- 1

1 - 10 - 500 + 1000 |- 1

- 1 + 9+509
1 - 9 - 509 + 491

-1+8
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288. In approximating to the roots of an equation, the fol-

lowing remarks should be borne in mind. Let the student supply-

proofs when needed.

(1) Every equation of odd degree has at least one real root.

(For / (x) has opposite signs when x = -\-'X and x = — oo.)

(2) When an even number of roots lie between x = a and x = b,

f (a) and / (b) will have like signs.

(3) Whenever more than one root lies between two assumed

values of x, especial care must be used to separate them by trial.

(4) The next decimal of a root is obtained approximately by

dividing the absolute term of the last transformed equation by

the coefficient of x with its sign changed.

(5) Should this decimal be too large, the constant term of the

next transformed equation will change sign. (Observe that in

the example the constant terms of the original equation and of

all the transformed equations are of the same sign.)

(6) Should this decimal be too small, the next transformed

equation will not have a root between and 10, except when there

happen to be two or more roots of the original equation with the

same integral part.

(7) To obtain a negative root, change the signs of all the roots

and proceed as for a positive root.

289. Exercises. Calculate to four decimal places the real roots

of the equations:

1. x3 - 24 X - 48 = 0. 12. 4 x3 - 3 X - 1 = 0.

2. x3 - 7 x2 + 4 X + 24 = 0. 13. x" + x3 - 2 x2 - 3 x - 3 = 0.

3. x3 - 2 X + 1 = 0. 14. x4 - 2 x3 - 8x2 + 24x - 48 = o.

4. x3 - x2 + X - 1 = 0. 15. x4 - 4 x3 - 8 X + 32 = 0.

5. x3 + x2 + X + 1 = 0. 16. x4 + 2 x3 + X + 2 = 0.

6. x4- 6x2 + 5=0. 17. 3x4-2x3 -16x2-56x+ 96 = 0.

7. x3 - 7 X - 5 = 0. 18. x3 - 7 X - 7 = .

8. x3 - 31 X - 19 = 0. 19. 8x4 + 16 x3 + 18 x2 + X + 7 = 0.

9. x3 - 48 X - 112 = 0. 20. 7 x3 + 8 x2 - 14 X - 16 = 0.

10. 2 x3 - 18 x2 + 46 X - 30 = 0. 21. 2 x* - 5 x3 - 32 x + 80 = 0.

11. 7 x3 - 9 X + 5 = 0. 22. 2 x5 - 4 x3 + 3 x2 - 6 = 0.

290. Cardan's Solution of the Cubic Equation. — As in the case

of the quadratic equation, so the equations of third and fourth
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degree may be solved by means of radicals. This cannot be done

for equations of degree higher than the fourth. We give here a

solution of the cubic equation

(1) aox3 + 3 aia;2 + 3 a2X + ag = 0.

We first obtain a new equation containing no term of second

degree. To do this, put

X = ij -{- h.

Expanding and collecting in powers of y,

aoy^ + 3 (ao/i + aO if + 3 (00/1^+ 2 a^h + 02) 2/ + aoh^

+ 3 aih- + 3 02/1 + 03 = 0.

The term in y- drops out if

aoh + ai=0, or h= ^•

With this value of h the equation becomes

o ,
3 (0002 — ar)

,
ao^as — 3 aoaia2 + 2 ai^

"''^ + ^ ^ + a?
=^-

Putting y = —'

we have

2^+3 (aotta - ai2) z + (ao^ag - 3 aoaia2 + 2 ai^) = 0.

Let

H = 0002 - fli^; G^ = floras - 3 ao«ia2 + 2 Oi^.

Then the equation becomes

(2) z^-\-3Hz-\-G = 0.

To solve this equation let

2 = Vr + Vs.

Then
23 = r + s + 3 \/rs (Vr + -s/s),

or, 2^ - 3 's/rs • 2 - (r + .s) = 0.

If this is to be identical with (2), we must have

yfrs = — H, and r + s = — G;

or, rs = — H^, and r -{- s ^ — G.
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Solving for r and s,

-G+ \/W+nP -G- VG2 + 4 ^3
'
= 2-

'
'= 2

Then

z = ^r-^ <fs=<Jr-^' {rs=-m.)
\lr

Let the three cube roots of r be ai, 0:2, and 0:3. Then the three

values of z are

H. H H
Zi = ai , 22 = «2 ' 23 = 0:3

(Xi a2 as

The corresponding values of x are then found from

, , ai z ax z — a\
x = y-{-h = y

= i = —i-

ao ao flo Go

Nature of the Roots.— The following criteria serve to deter-

mine the nature of the roots

:

(a) G^ + 4H^ < 0, three real distinct roots;

(b) G^ + 4iH^ = 0, three real roots, two being equal;

(c) G^ + 4 H^ > 0, one real root, two imaginary roots.

By direct calculation, for which we shall not take space, we find

{z, - z-i) {Z2 - 23) (23 - 21) = V-27((?2 + 4/^3),

or,

{zi - Z2Y {Z2 - zzY {zs - z,Y = - 27 (G2 + 4 H^). ,

When the roots are all real, their differences are real, hence the

left member of the last equation is positive; therefore G^ + 4 H^
must be negative. When two roots are eqYial, their difference is

zero; hence G^ + 4 H^ = 0. When two roots are imaginary, they

must be conjugate imaginaries; suppose them to be

Z\ = a + ih and Z2 = a — ib.

Let the third root be 23 = c, where c is real [(1), (288)]. Then we
show directly that (z^ —22)^ is negative, and that (22—23)^(23—21)^

is positive, hence the left member of the above equation is nega-

tive; therefore G^ -{- 4: H^ must be positive.

The quantity G^ -\- 4 H^ is called the discriminant of the cubic

z^ -j- Z Hz -\- G = 0,
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When all the roots are real, i.e., G--\- 4 H^ <0,r and s are con-

jugate complex quantities; let them be

r = A -\- iB; s = A — iB.

In this case Vr and '^ s cannot be evaluated algebraically. The

roots may then be obtained in trigonometric form. Let

A = u CO?, v; B = u sin v.

Then
r = u (cos V -\-i&m.v); s = u (cos v — i sin v).

Hence

Vr = Vm(cos ^ h *sm ~
1,

/ v-\-2kT!r . . v-\-2kTr\ , „ , „Vs = Vw ( cos ^ I sm ^
J

; A; = 0, 1, 2.

Here ^u denotes the real cube root of u.

We now find

z=</-r^</-s^2</u cos 'L±1J^ ;k = 0,l,2.
o

291. Ferrari's Solution of the Quartic Equation. — Write the

given quartic equation in the form

(1) x^ -\- 2 ax^ + bx- -\- 2 ex -\- d = 0.

Add to both members (px -\- q)^:

(2) x'^-j-2ax^-}-{b + p-)x^+2(c+ pq)x+(d+ q^) = {px + qy.

The left member will become a perfect trinomial square of the

form
. (a;2 -{- ax -\- k)^

^

by putting

(3) p^ = a'^-b-\-2k; q^=-d-\-k^; pq = -c^-ak.

Then equation (2) becomes

(a:2 -\-ax + kY = {px + qY,

or,

(4) x^-\-ax+k=±{px + q).

Taking each sign in turn we have two quadratic equations

in x, which give the four roots of (1).
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To obtain the values of p, q, and k in (4) we must solve equa-

tions (3) for these quantities in terms of the coefficients. On
equating the values of p^q"^ from the product of the first two of

equations (3) and the square of the third equation we find a

cubic to determine A;:

(5) 2 F - 6A;2 + 2 (ac -d)k-{-(hd- a?d - c") = 0.

This is called the reducing cubic, and is to be solved for a real

value of k. Then p and q are obtained from (3).

Example. x* + 4 x3 - 3 a;2 - 16 x + 5 = 0.

Here a = 2, 6 = - 3, c = - 8, d = 5.

Then (5) is 2 A;3 + 3 A:2 - 42 A; - 99 = 0.

A real root is k = — 3.

Then from (3), p = 1, q = 2; or, p = - 1, 5 = -2.

With either set of values of p and q (4) becomes

(x2 + 2x-3) = ±(x + 2).

Hence

Therefore

x2 + X - 5 = 0, or, x2 + 3 X - 1 = 0.

-1±V21 -3±Vl3
X =

2

Exercises. Solve the following equations:

1. x3 - 3 x2 + 4 = 0. 9. x4 + 2 x3 + 2 x2 - 2 X - 3 = 0.

2. x3 - 3 X - 2 = 0. 10. x* + 6 x3 + 3 x2 - 2 X - 3 = 0.

3. 4 x3 - 3 X - 1 = 0. 11. x4 - 4 x3 - 9 x2 + 2 X + 3 = 0.

4. x3 - 24 X - 48 = 0. 12. x^ + 4 x3 - 16 x + H =0.

5. x3 - 7 x2 + 4 X + 24 = 0. 13. x" + 4 x3 - 16 x - 16 =0.

6. x3 - 3 x2 - 6 X + 1 = 0. 14. x4 - 3 x3 - 7 x2 + 15 X + IS = 0.

7. x3 - 7 X - 6 = 0. 15. x4 - 4 x3 - 8 X + 32 = 0.

8. x3 - x2 + X - 1 = 0. 16. x* -f x3 - 2 x2 - 3 X - 3 = 0.



CHAPTER XX

Spherical Trigonometry

292. Spherical Geometry. — We devote this article to a review

of some facts concerning the geometry of the sphere.

(a) A plane section of a sphere is a circle. When the plane

passes through the center, the section is a great circle; otherwise a

small circle.

(b) Any two great circles intersect in two diametrically opposite

points and bisect each other.

(c) The two points on the sphere each equally distant from all

the points of a circle on the sphere are called the 'poles of the

circle. A great circle is 90° distant from each of its poles.

(d) A spherical triafigle is a figure bounded by three circular

arcs on a sphere. In this chapter we consider only triangles whose

sides are arcs of great circles. Any such triangle may therefore

be considered as cut from the spherical surface by the faces of a

triedral angle whose vertex is at the center. The face angles of

this triedral angle measure the sides of the triangle, and its diedral

angles the angles of the triangle.

(e) If a triangle be constructed by striking arcs with the vertices

of a given triangle as poles, the nev/ triangle is called the polar

triangle of the given one.

Let the sides of the given triangle be a,b, c; its angles A, B, C;

let the sides of the polar triangle be a', b', c' and its angles A', B' , C;
we assume that A is the pole of a', B of b', and C of c'; then

a' = 180- A
;

A' = 180 - a
;

and similarly for the other sides and angles. That is, ariTj part of

the polar triangle is the supplement of the part opposite in the given

triangle.

(f) The difference between the sum of the angles of a spherical

triangle and 180° is called its spherical excess.

The area of a spherical triangle is to the area of the sphere as its

spherical excess, in degrees, is to 720°. That is, if E be the spherical

269
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excess in degrees and K the area, and R the radius of the sphere,

then

293. Spherical Right Triangles. — Let be the center of a

sphere and ABC a triangle on its surface having C = 90°. The

triangle shown in the figure has each

part, except C, less than 90°. The re-

sults below are true in any case, as may
be shown by drawing other figures, or by

assuming the right triangle as a special

case of the oblique triangle.

Cut the triedral angle 0-ABC by a

plane _L OB, forming the plane right A
A'B'C, with C'=90°. Then also As OB'C and OB'A' are

right-angled at B'. Further, Z A'B'C measures Z B (292, (d)).

Then
A'C

• AiT^i^t ^'C OA' sin&
(a) sin B = sm A'B C = -^Tg,

= =

(b) cos B = cos A'B'C =

(c) tan^ = tsinA'B'C =

B'C
A'B'

A'C
B'C

A'B'

OA'
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of c, A, B, and arrange the five parts, a, b, co-A, co-c, co-B, called

circular parts in the order in which they occur in the triangle as

in the adjacent figures. Then if any one of the five be taken as

the middle part, of the other four parts two will be adjacent and

rco-;^

fMB^

the other two opposite to this part. Thus, if co-c be taken as the

middle part, co-B and co-A are adjacent, a and b opposite.

Rules:

i

Product of tangents of adjacent parts,

or

Product of cosines of opposite parts.

Exercise. Taking each part in turn as the middle part write out a com-

plete hst of formulas relating to the spherical right triangle. Derive these

formulas from those given above.

295. Solution of Right Triangles.

Example. Given a = 35° 42'; 5 = 60° 25'

The diagram of circular parts is shown in

the figure. Taking (1), (2), (3) in turn as

middle part we have

Find b, c, A.

(1)

(2)

(3)

Hence,

sin 35° 42' = tan 29° 35' tan b;

sin 29° 35' = tan 35° 42' tan (co-c);

sin (co-A) = cos 29° 35' cos 35° 42'.

^ _ sin 35° 42' _ sin 29° 35'
^^"^ ^ " tan 29° 35" ^"^^ "^ ~ tan 35° 42"

cos A = cos 29° 35' cos 35° 42'.

Check. The computed parts must satisfy the relation

sin (co-A) = tan b tan (co-c), or cos A = tan b cot c.
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Computations.

log

sin 35° 42' = 9.7660

tan 29° 35' = 9.7541

log

sin 29° 35' = 9.6934

tan 35° 42' = 9.8564

log

cos 29° 35' = 9.9394

cos 35° 42' = 9.9096

tan& =0.0119

b = 45° 17

Check.

cot c = 9.8370

c = 55° 30'

log cos A = log tan b + log cot c.

9.8490 = 0.0119 + 9.8370.

cos A = 9.8490

A = 45° 4'

Ambiguous Case. When the given

parts are an angle (not the right angle)

and its opposite side, two solutions

are possible, because the other parts

are then calculated from their sines.

The two triangles together form a lune, as AA' in the figure,

where A, a are supposed to be the given parts.

296. Quadrantal Triangles. — A quadrantal triangle is one

having a side equal to a quadrant or 90°. Its polar triangle will

be a right triangle, which may be solved by Napier's Rules. The

parts of the given quadrantal triangle then become known by

(e) of (292).

Solve the following triangles, C being the right angle:

4. 6 = 100°, 7. B = 145° 53',

a = 40°. c = 110° 20'.

Exercises.

1. a = 45° 10',

B = 70° 20'.

2. 6 = 65° 15',

A = 25° 50'.

3. c = 33° 18',

b = 30° 37'.

A = 120° 42'

c = 56° 50'.

5. A

Solve the following quadrantal triangles:

10. a = 90°, 11. A = 65° 15',

b = 50°, b = 90°,

c = 40°. c = 50° 25'.

8.
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Therefore, c
sin h sin A = sin a sin B, or

- sin a _ sin^i

sin 6 ~ sin B
That is, the sines of the sides are

proportional to the sines of the

opposite angles.

Exercise. Discuss the case in which D falls on AB produced.

II. Law of Cosines. — In the figure above let AD = m, so that

BD = c- m. Then in right A BCD

cos a = cos (c — wi) cos p, . . . (d), (293)

= cos c cos m cos p + sin c sin m cos p.

But in A ACD
cosW cos p = COS 6

and sinm cos p = sin C sin h X ——7^ = sin b cos A.^ sinC

Hence

(2) cos a = cos h cos c + sin 6 sin c cos A.

That is, the cosine of any side equals the product of the cosines of

the other two sides plus the product of their sines by the cosine of

their included angle.

Exercise. Discuss the case where D falls on AB produced.

From the fundamental formulas (1) and (2) we shall derive a

series of other formulas adapted to the solution of triangles.

298. Principle of Duality. — By means of (e) of (292) any

formula relating to the spherical triangle can be made to yield a

second formula. Thus, let A A'B'C be polar to A ABC. Then
from (1) and (2)

sin a' sin ^4'
, ,, / ,

• r/ •
r ai

—.—Ti
— -—^^; cos a = cos cose +smosmccosA.

sm 6 sm B

But a'=180-yl, .4' = 180 - a,

6' = 180 - B', B' = 180 - 6,

c' = 180 - C, C = 180 - c.
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Substituting and reducing, we have

sin A _ sin a

sin B sin 6

(3) cos ^ = — cos B cos C + sin -B sin C cos a.

The first of these is simply the law of sines; the second is a new
formula.

299. Formulas for the Half Angle. — Solving (2) for cos A, we
have

cos a — COS 6 cos c
cos A

sin h sin c

Then

sm^
1 . , /l - cos A /„,,

, ,
. Il — cosA^\

2^ = V 2 (,Whynot±\/ ^ V
_ cos g — cos 6 cos c

sin b sin c

sin b sin c — cos a + cos b cos c

2 sin b sin c-W'-

_ . /cos {b — c)— cos a

V 2 sin 6 sin c

_. a + 6 — c. a — 6 + c
2 sm ;r sm ?:

2 sin 6 sin c

Now let

(4) 2s = a + 6 + c;

then
a + 6 — c , a — b-\- c ,

^ = s — c and ^ = s — b;

therefore,

,_. -1^4 /sin (.<* — b) sm (s — c)
(5) sm-^ = V ^

—

. ; .
-•

^ ^ 2 V sm & sm c

Similarly,

/c^ 1^4 /sm.s sm (.s — a)
(6) cos-^l = V . , .

^'
^

^
3 V smfrsmc

By dividing

(7)
2 > sm ft- sm {s — a)
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Given the three sides, one of these formulas, preferably the last,

will determine the angles. When all three angles are desired, let

(8) tan r

then

/sin (s — a) sin (s — b) sin {s — c)

,

Sins

,_, , 1 ^ tanr
(9) tan-^1 = -:—7 r
^ ^ 2 sin (s — a)

/,.^^ . 1 _ tanr
(10) tan-l?=-^^ -Ti
^ ^ 2 sin (s — b)

/,,N .^ 1 ^ tanr
(11) tan- C =

2 sin {s — c)

300. Formulas for the Half Sides. — Proceeding as above with

(3) of (298), or by applying the principle of duality to formulas

(5) to (11) we have, on putting

(12) 2S = A + B-\-C

and
'

(13) tan Il = \/-
''''^''^

cos {S — A) cos {S — B) cos {S — €)

(14)

(15)

— cos S cos {S — A)

sin B sin €

1
,
/cos is - B) cos (,S' - C)

sin B sin C

,_, ^1 ./ - cos -S cos (-S' - ^)

(17) tan|« = tani?cos(« - ^),

(18) tan|6 = tan JJ cos (*S' - jB),

(19) tan I c = tan 72 cos {S - C).

301. Napier's Analogies.— Dividing tan|A by tan | 5 and

reducing, we have
tan I ^ _ sin (s — h)

tan I B sin (s — a)

By composition and division,

tan I A+ tan | B _ sin (.s — 6) + sin (s — a)
_

tan I A — tan | B
""

sin (s — 6) — sin (s — a)
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Reducing tangents to sines and cosines and simplifying the result-

ing complex fraction, applying the formulas for sin {x ± y) on the

left and for sin u ± sin t; on the right, we have

sin Ty{A-\- B) tan | c

(20)

or,

sini (^ — B) tan| {a — b)

1 , , sin 5 (^ - -B) ^ 1

(200 tanj (« - 6) = ^-^^-^i^-c.

Multiplying tan h A by tan h B and reducing,

tan ^ A tan ^ B _ sm(s — c)

1 sin c

By composition and division, and reduction as above,

cos I (^ + ^) _ tan I c

^^^^ cos 1{A- B) ~ tan|(« + 6)'

or,

^ 1
^ ,

. cos i (A - B) 1

(210 tan-(. + 6)=
^^^^^^^^^

tan-c.

These formulas determine the other two sides when two angles

and their included side are given.

Proceeding as above with tan ^ a and tan ^ b, or by the principle

of duality applied to formulas (20) to (21'), we obtain

sin I {a -\-b) _ cot| C
^^^^

sin lia-b)
~

tan r,{A-B)'

or,

1 , sin :; (a — b) i

(220 tan-(^-^) =
^.^;^^^_^^^

cot-C,

(23)

or,

cos k (« + b) cot I (7

cos I (a - fe) tan i (^ + B)

1 cos i (a — b) 1

(230 t^°i(-^ + ^)
%osi(« + >)

'°'^^-

These formulas determine the other two angles when two sides

and their included angle are given.
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302. Area of a Spherical Triangle. — This may be calculated by

(f) of (312), namely.

K = ^
^'!rg^^'^ X 4 TT 72^ or, K = E (radians) X R".

To obtain E, we may first calculate the angles. E may also be

obtained by one of the following formulas, which we add without

proofs.

1 tan 5 a tan r, b sin C
tan-E

3 1 + tan r, a tan r, h cos C
'

tan-^ = y tan- tan—-

—

tan—-

—

tan •

303. Solution of Spherical Oblique Triangles. — Six cases

arise, according to the nature of the three given parts.

I. Given two sides and an opposite angle.

Denote the given parts by a, b, A. Calculate B by (1), then

C by (22) or (23), and c by (20) or (21).

„, , sin b sin B
Check: -.— = -.—rz>

sm c sm C

which involves the computed parts.

Ambiguous Case. Formula (1) will give two (supplementary)

values for B. Two solutions are obtained when both values of

B lead to values of C. Otherwise one or both values of B must

be rejected.

Rule. Retain values of B which make A — B and a — b of like

sign. Otherwise (20) and (22) take the impossible form + = — •

II. Given two angles and an opposite side.

Denote the given parts by ^, B, a. Calculate b by (1), then

proceed as in I.

Ambiguous Case. Formula (1) gives two values of b. Retain

the value or values ivhich make A — B and a — b of like sigii.

III. Given the three sides.

Calculate the angles by (9), (10), (11).

^, , sin A sin B sin C
Check: = -.—j- =

sm a sm o sm c
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IV. Given the three angles.

Calculate the sides by (17), (18), (19).

Check: As in III.

V. Given two sides and their included angle.

Denote the given parts by a, h, C. Calculate ^ {A -\- B) by (23'),

^ {A — B) by (22'); then A and B by addition and subtraction;

obtain c by the law of sines. Check by (20) or (21).

VI. Given two angles and their included side.

Denote the given parts by ^, B, c. Calculate | (a + 6) from

(21'), I (a - 6) from (20') ; hence get a and b; obtain C by the law

of sines. Check by (22) or (23).

304. Example. Given a = 100° 37', h = 62° 25', A = 120° 48'.

Formulas.
. „ sin 6 . .

smB = -— sm A
,sm a

^ . ^ sin I (a + fo) ^ , , . D\
cot I C = -^-7

—

—~ tan i(A - B),
^ sm I (a — 6)

. sin I (A+ B) , . , ,

.

^, , sin 6 sin B
^^''^' sinc'sinC
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Note. In the solutions of triangles, a complete form should he pre-

pared in advance, so that only numerical values need be inserted

when the tables are opened.

305. Exercises. Solve the triangles whose given parts are:

1.

a = 53° 18'.3,

b = 36° 5'.6,

c = 50° 24'.9.
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Then in AA1PA2, PAi

P

90 ' -cj^i, PA2 = 90° -9^2, and

Z A1PA2 = X2 — Xi- Hence

in AA1PA2 two sides and

their included angle are known,

and A1A2 (in degrees) maybe
calculated as in V of (303).

Problem 2. A ship is to sail

from A I to A 2 by the shortest

path (great circle). On what

course (at what angle with the

meridian) will she depart from

^1; on what course will she

Assuming the positions of

A I and A2 given, we have two

sides and the included angle of the triangle A1PA2. We must

calculate angles Ai and A2. This comes under V of (303).

Exercises.

1. Calculate the sides (in miles), the angles, and the area (in square miles)

of the triangle whose vertices are:

New York
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An observer at on the earth's surface will have his zenith at

Z, where the plumb line at 0, if produced, would meet the celestial

sphere; his horizon is the

great circle sivne, whose

pole is Z; his meridian is

the great circle nPZQs,

meeting the horizon in

the north and south

points.

Let >S be a point on the

celestial sphere, as the

sun's center, or a star.

Because of the rotation

of the earth, *S will appear

to describe the parallel

e'MSw'M'e', rising at e'

and setting at w'. When
S has the position shown in the figure, HS is its altitude, denoted

by h (height above horizon) ; Z sZH (measured by arc sH) is its

azimuth, denoted by A; ZS, or 90° - h, is the zenith distance of .S

and denoted by z. Thus h and ^, or z and A, completely define

the position of S with reference to horizon and zenith.

With reference to the equator and pole,

^*S is called the declination of S, denoted

by d, and Z QPE (angle which hour

circle PS of S makes with meridian PQ)

is called its hour angle, denoted by t; PS
or 90° — is the polar distance of S, and

denoted by p. Thus the position of S is defined by 3 and t, or by

p and t.

A PZS is called the astronomical triangle; its parts, except the

angle at S which we shall not need, are:

PZ = 90° - nP = 90°

PS ^ p = 90° - 8;

Z ZPS = t;

c/); (</j
= latitude of 0.)

ZS = z = 90° - h;

Z PZS = 180° - A.

Problem \. Given the latitude of 0, and the declination and

altitude of S, calculate the hour angle and azimuth of S.
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Here the three sides of A PZS are known, and it is only neces-

sary to calculate the angles at P and Z (III, 303).

Problem 2. In a given latitude, and for a given declination of

the sun, find the sun's hour angle at sunset and the length of day
(sunrise to sunset).

Here S is on the horizon and PZS a quadrantal triangle. We
obtain t by solving the polar right triangle for 180 — t. The length

of day will be 2 t.

Problem 3. Given the sun's declination and its hour angle

when it bears due west (A = 90°), find the latitude.

Here PZS is a right triangle, with the right angle at Z; p and t

are known, and PZ may be calculated by use of Napier's Rules.

Problem 4. Find the

hour angle and azimuth of

Polaris when at greatest

elongation, given the dec-

lination of the star and the

latitude of the station of

observation.

Let MSM' be the star's

diurnal path about the pole

(figure). When the star is

at greatest elongation, the

great circle ZS is tangent to the small circle MSM', of which PS
is a radius. Hence A PZS is right-angled at S; PZ and PS are

known, and the angles at P and Z may be found by aid of Napier's

Rules.

Exercises.

1. In latitude 40° 49' the sun's altitude is observed to be 20° 20'; its

declination is 15° 12'; find its azimuth and hour angle.

2. With latitude and declination as in exercise 1, find the sun's hour angle

when it is due west; when it sets; find its azimuth at sunset; find the length

of day.

3. With latitude and declination as in exercise 1, find the sun's altitude

and azimuth when its hour angle is 45°.

4. The sun, in declination 12° 22', is observed to have an altitude of 30°

when due west. What is the latitude of the station?

5. The declination of Polaris being 88° 49', find his azimuth and hour angle

at greatest elongation at a station in latitude 40° 49'.
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6. As in exercise 5 for the star 51 Cephei, d = 87° 11', and for d Ursae

Minoris, 3 = 86° 37'.

7. The stylus of a horizontal sundial consists of a rod pointing to the

north celestial pole. Hence its shadow falls due north when the sun is on the

meridian, that is, at apparent noon. What angle does its shadow make with

the meridian one hour after apparent noon, at a place in latitude 40°?

(Suggestion. In the first figure of this article let nP = 40° and Z ZPS =
l*" or 15°. The stylus lies in the line P'P, and its shadow, cast by the sun S,

must lie in the plane SP'P, and hence will fall on the plane of the dial, sivne,

along the line of intersection of these two planes. This line will be deter-

mined by the center of the sphere and the point where arc SP produced will

meet arc 7ie. Call this point S'. Then arc nS' measures the required angle,

and maybe found by solving right A nPiS', in which nP = 40° and ZnPS' = 15°).

8. What angle does the shadow of a horizontal sundial make with its

noon position t hours after noon in latitude (j) ? {Ans. tan x = tan t sin 0,
X being the required angle.)

9. Calculate the angles which the hour lines of a horizontal sundial make
with the noon-line in an assumed latitude.



ANSWERS
(Answers are given only for the odd-numbered exercises.)

Article 10

1. ia-i. 3. .05 a? -Sab- 4.625 ac. 5. 63 x - 2 y - 4 2. 7. a'^b'^c -

I a2c4 + 1*3 a^cd^ - 2 a?c. 9. 1.2 a^bcW^ - 1.8 acM'' + .3 a?cH^ - 3 (mW^. ' 11.

x6-5x4 + 3a;3 + 6a;2-7x+2. 13. x^ - 9 x^i/S + 7 x^s -j_ 13 a;3y4 _ 19 a;22/5 4.

8xy^-yT. 15. | a2 + ,27. 17. x^ - a2.r2 - 62^2 + 02^2. 19. 9a2_9o+6.

21. -3«3p. 23. -IS... 26.
°^'-"-J^'

+ »
. 27.-i^ + || +

j2^-2-^- 29. 3a2x-4ax2+x3. 31. .c2 + 5 x^/ + 3 ?/2. 33. fa3-fa26

+ |a62. 35. a;3_ 33.2 _2x-t-i. 37. 2x2 -fxy - ByS. 39. (a + b)^. 41.

Jx2-32/. 43. ab + c. 45. a2 + 62 +c2 + d2 _2(a6 -oc + oti -6d + 6c +c(f).

Article 12

^' ^^~4l"2~^)- 3. (x-l)(3x-l). 6. (3x-?/)(2x + 72/).

7. X (2 X - 3 ?/) (4 x2 + 6 XT/ + 9 y^). 9. (x + 2) (x - 2) (x + 3) (x - 3).

11. (x - 11) (x + 10). 13. (x - 9 a2) (x - o2). 15. {xy - 5 z) (xy + 2 z).

17. (x - 1) (x - 8) (x + S). 19. (x + 1) (x2 - X + 1) (x - 1) (x2 + x + 1).

21. - 3 xy (x + y). 23. (ac + b) (ac + d). 25. xy (x + y) (x - y)2.

27. (x2y - 22) (x2y + 5). 29. (x + 2) (.t2 + 7^ + 2).

Article 15

1. 3 (x + 1). 3. 4 (x2 + 7/2). 5. ox (a - x)2. 7. 3 a (2 a + 3 6 - 4 r).

9. (2x-3y). 11. (3x-2g). 13. (x2 + 7). 15.(5x2-1). 17. (x + y).

19. (a2 - ab + 62). 21. 24 a26x2y3. 23. (a + 6) (a - 6)2. 25. (x - 4)

(x+l)(x+3). 27. (3x-2) (2x+3)(2x-3). 29. (3x - 2a) (4 x - 3«)

(3 X + 4 a). 31. (m + v) (m - n) (m + 2n) (m - 2 n). 33. (x + 1) (x + 2)

(X + 3). 35. (x - 1) (X + 1) (X + 2) (X + 3). 37. (x - 1) (x + 1) (.r2 + 1)

(x2 - X + 1). 39. (a - 6) (a + 6) (a2 + ab + 62) (a^ - ab + 62) (a^ + a^b^ + ¥).

284
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Article 19

1 4ax 3.
"" ~ ^'

6. x8+a:6y2+xV + xV+j/«
^ ^ ^

x^+x + 1

' X — y ' x*y* '
' ' x2 +

1

11.,-^^. 13. ^(^±M. 15.-^4. 17. x3+,3. 19.^-^-. 21. 0.
3{x — y) a2 m2

-^ 4x — ?/+3

o, 2 -(3x4-2a:3 + 3a;-4) x3 _ x2

(x - 1) (x - 2) (x - 3) 2 (x + 1) (x2 + 1) (x2 - X + 1) a3 a^

+ ^_"^ 7x/ 343 x3 \ (5 a3 - 9 c3) (45 c3 - 49 63) (9 c2 - 5 gS)

^x2 u,-3' II2/V 13312/3/
^^-

14,175a3c6

Article 21

6. ^„. 7. ai269. 9. '^^'-

Article 33

1- «o^- '• ^^^^^'^ »•£ ^- iJ;^- »• ^5^V4. 11. -Vie,

'"^
'

^^~~
'25

49'

10

727^13. 'm m. -^27. .16. ^1. y/^|. y/j||,. 17.
^|^

V^w' \/n' "• ^^ ^''' ^'"- "• "^' '^"'' '^°^"- ''' ^^
\/i'- \/^° ^^- 75' "^^'' ~^^- ^'-

'
^'^^ ''

»

"^^-

31. 3^ -s/o. 33. (3 + 6 - a) V«. 35. a \lx. 37. 1 + V3. 39. | (\^ +
Ve). 41. I (V6 - Vl4). 43. V2 + V5." 45. VTO - Vs. 47. 1.

49. 6 V2 - 3 V 15 + 8 V3 - 6 VlO. 51. 8-8 <JVl + -s/ls. 53. Vw2 - n.

z

32 — 3V2"
55. a. 57. ^/r32.v22. 59. 2. 61. 4. 63. 3. 65. 3. 67. W|

71. 7n'\ 73. a'. 75. al 77. a'\ 79. (x + 2/)"*". 81. ^- 83. a*.

„ a(l+^^) Q_ 4a3 + 12V^3 4-9 II+2V14 ., a^h-^c\fd.
^^- l-a ^^' 4^^^:^9 ^®' 5 ^^-

a26 - c^d
6

93. al 95. 2a-2-7a? + 6a-^+7a-*-lla-^-2a-* + 7a-i-6. 97. 2 a^
4 3 2 1

-5a^ + lOa^ ~7a^ + 6a^. 99. 4 a-'^b'^ - 12 a-h''^ + 9 a'^b-'^ 101.

X' -3x2/^ + 3 X* 2/^ -2/2. 103. m'^l + 4 m"^ + 6m-3 + 4 rre"? + m-e).

105. a^ + J + a^ + 2(a"^-a'^"-J^). 107. a*+ 46^ +9c + 16d^ + 2( -20*6*

+3aic^-4aid^-6 6*c* + 8 6*d^-12c*d0. 111. x^ - x^ + x^ - x^ + 1. 113.

ah + a" 6" + 6^. 115. a -\/a. 117. 3 ^f^; 5 ^T^; 9 V^. 119. 3 yfi.
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121. 2 </i. 123. 9 V^n;. 125. m V^. 127. 47 - i. 129. 4 i \/6 - 2.

131.-1. 133. i. 135. ^-^+i?^^- 137. - i 139. 2 x = 3. 141.

ax + b = C. 143. 4x ^ 5. 145. x = 5. 147. x = 10. 149. x = 4.

Article 38

1. 0. 3. - 3, - 4, - 6, - 7. 5. - 3, - 4. 7. 2, a. 9. 7, .3. 13. (p + q)

Article 41

3. 2.9196, 0.9196, 9.9196 - 10, 8.9196 - 10. 6. 3.667. 7. 1.655; 11.695.

9.52.22)29.34. 11.0.1829. 13. log g- 15. log^^^ 17. log
"'^^^

Article 46

1. 0.975. 3. 88.444. 5. 0.99965.

Article 51

. 5a — 36- c , m — -p „ . 6 ^. mn
1. X = ^ 3. X = T- 5. - 7. 00. 9. r 7- 11. —

j

»

2 q—n b — a — 1 m+ n—a
00. 13. 1. 15. |.

Article 60

1. 6. 3. -^. 5. -^. 7. 3tol. 9. II days. 11. , "^^

,

m — 1 n — m ao -\- ac -{- be

days. 13. 5x\ min. past 10; 21/i min. past 10. 15. 1^ hrs.

Article 64

1. 3, 5. 3. 32, - 17. 5. 9, 8. 7. 2, 3. 9. Inconsistent. 11. 0, 4. 13.

1, - 1. 16. Dependent. 17. 6, 12. 19. 12, 5.

Article 69

1007.28 92.33
1. 6, 12. 3. 6, 12. 5. 9, 7. 7. 4, 3.

1.0163725' " 1.0163725

5 a — 5 &

2
11. Not independent. 13. 5, 6. 15. i \. 17. 4, 7. 19. 7, f . 21

a + b „- abcg abcf __ _ nqrt -\- npsv
_

_qsl— msqv __—;r— Zi> -, u' , :; «o. X — .
; y —

;

• At,
2 bg — af bg — af mqr + ps ps + mqr

_r>fq^^ _nmq_^
29. No solution. 31. No solution. 33.20,17,5. 35.

mq — np mq — np

3,2,1. 37. 3,4,5. 39. i, |, oo. 41. 1,2,3,4. 43. 1, .8, .2, .6. 45. 16t\ hrs-,

7Hhrs. 47. S4000; 4i%. 49.36,9. 51.89,35. 53.13,17,20. 55. 1, If ,
li.

57. 2, 3, 6 hrs. 59. $9150, $8600, $7550.
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Article 75

1. 2, - 6. 3. 2, - 8. 6. - 2, 7. 7. 3, - 4f. 9. 5, Ij

13. -2^,5. 15. 3, -4^. 17. 2 6, -6. 19. 2, c.

11. t, -^.

Article 86

1.6. 3. 0or3. 5.1. 7.13. 9.4. 11. _ Vl441-29 ^^^ ^ 15. 3or-?

25. 3. 27. ±\/-mp. 29,17. li 19. 15. 21. ± i VI- 23. 4 or - 1

±6V«2^^fc2. 31. ±ia. 33. ±mV^. 35. ^^'^^^,
,

"
• 37. b±\fW^^

39. a y/^r 41. ± 8 or ±
a /^

2-V^

a + 1

43. ^^±^v^r:r4. 46

4 ^4 or - 8. 47. 4 or - 9. 49. 27 or 64. 51. or 9. 53. 14, 16, 18; or,

b - a±Va2+62-6a6
14, -16, -18. 55. 30X60. 57. ^ \/ab - A

10
61. I 63. .

571

-9; a;< -1 {

, n<l 65. 20; 60. 67. x > - 1 and < - 9; - 1 and

> -9. 71. i(Vl7-l); ^(Vl7 + l).

Article 93

1. ± W2; ± I ^/2. 3. I V2; - ^ V2. 5.
-6± VTi.3±2 vn

or If; 3 or U- 9.
6 ± V6. - 2 ± 3 V6

20 20
11. m =±2.

7.

Article 95

1. ±4=; t4=. 3. -^-:-±.. 5. 0, 2; 1, 0. 7.
l^^ j: 3^^1559

Vl3 Vl3 Vl3 Vl3 145

-162±2 V-1559 g 4^
145

23

13

9± V-23
13

11. ± I V5-

Article 97

1. 0, 1;0, 1.
« 65±Vl29 l±Vl29 _ 7±4V^^ 2T4
o. t:?^ ;

77;— • 5. 7^
:

32 16

1±V5;^^^- 9. -4±2V3; -7±4 V3. 11. - 1.
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Article 99

1. 1,-1; 0,-1. 3. W5; h 5.
35

'

35

54±V66 -.12T3V66
25 25

). ±V v"^ ± f V- 7. 11. db Vs.

Article 105

1. X = ± I \^, ±1 VS, y = ±h V2, + W5. 3. X = 0, 3, ± r% Vl3;

7/ = 2, 0, T A Vi3. 5. x = 0, 9, V; 2/=0, -6, V-

Article 106

1. ±1 V29±V41, ± W7TV41. 3. ±x«5 V-5; ±V-¥. 5. ±V3,

± j\ V57, 0, T t\ V57.

Article 107

1. ±V3;±1. 3.±f;±|.
5.±^;±i^'.

Article 111

l.x=±25;y=±6. 3.±5;±4. 5. i^; ^-^- 7. f, i; i, |.

9. 7^
499.

g^ 923|_ 11. 13- 7_ 13. ^ 13; ^ 7; two solutions. 15. 7, - 1;

- 3, 17i 17. 37rt, 4; 43t\, 7. 19. 4, 5; 4, 3; two answers. 21. 14fi, 5;

15H. 2. 23. 8, 9; 9, 8. 25. ±2, <x; ±1, o). 27. ^^^^^^ ; ^^^^ ; four

solutions. 29. 3 ± V6,
~^^^^~^^

; 3 T VS, Zli^^/EU. 31. _ 2, ^;

0, 00. 33. 7, 2; 2, 7. 35. 0, 5; 5, 0. 37. 5, - 6; 11, - 12; four answers.

39. 2,3, -3±V3; 3, 2, -3tV3. 41. 12,3, -8±2V7; 3,12, -8T2V7-

43. ,8, ?, -^'t^^; 8,54,^«^l:^. 46. 4,

3

/ ^^5^
; 3,4,

3 ^ ^ ^

l^^Zm. 47.
4,7,ll-±:^p^;7,4,li^^^.

49. 9, 7; 7, 9; two

answers. 51. ± 2, ± t?z V516; ± 1 ^ -7^=- 53. x = 7, - 2, 77r, - 2 t/?,

V516 ^ I

—
T^

7u;2, -2vfi; 2/ = 2, -7, 2w, - 7 ti', 2w', -Tifi; w=~— 2~ ' ^^'

m = 11, -9, 11 w, -9w, 11^2, -9it)2; « = 9, -11, 9w, -11 w, 9w^, -llu;2.
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67. X = 243, 32; ij = 64, 729; two answers. 69. x = 3, - 1, + 1, - 3; ?/ = 1,

- 3, 3, - 1. 61. ± Vl ± \ V3; ± Vl T W3. Use both upper or both

lower signs under radicals; outside of radicals use all combinations. 63.

^^ 2 » 2 ' ^^^ solutions. 65. ^ ;

fcg T g V2 62 - a2

2

, ... -_ m / ^ n-\-ahm , A m
two solutions. 67. k~ \±\ -^nr + 1 J ! ^7"

2 a v y n — 3 a6w / 2 a

f ± \/-^ _ o" r l); two solutions. 69. ic = ± V-5 + 1, y =±V^ -Ij

x = ±V^+ l, y = ±V^-l;foursoIutions. 71. 14 = ±W±32 V2-27+1;

t; = ± 5 V± 32 V2 — 27 — 1 ; four solutions. Use all possible combinations of

signs in u and in v. 73. ± ah\j2a'^ — 62 — a62 ; ± ah'sj'la^ — 62 + a62; two

solutions. 75.
^

;

'^

77. 5, 3, 4 ± \r^; 3, 5, 4 T V^^^.

79. z = ± V^^, 2/ = =F V^^3, z = 2; two solutions. 81. x = 2 or 00; y =

- ^ or — 1; 2 = 1 or 0. 83. x = ^r- (pg - r ± \J{pq - r)2 - 4 §3) ; 1/ == —

-

(pg - r TV(pg -J-P -4^3); 2 = -
; two solutions. 85. ± V', "F V, ± ¥ ; take

all upper or all lower signs. 87. x = ^(a — 6 —c—2± VC-^ +6+c — a)2 +4;a (2+c))

;

I

or ± J

rT^''^rTx' ®^' ^ = '*«^3; 2/=±iV^,or±f;2=±W-i,

)^

Problems

1. 8,6. 3. 48, 36. 5. x = 15, - 12; ?/ = ll, - 16; two answers. 7. x= 19,

20; 2/
= 17, -18; four answers. 9. 33, 56. 11. 19,23. 13. 28, 20 ft. sec.

15. 13j"j; 45 days. Assume each man's pay proportional to amount of work he

does. 17.42. 19. ^5. 21.3,5yds. 23. si = 15.4; 11.7 ft. sec; S2 = 6.8; 12.2
ft. sec.

Article 114

1. 3. 3. - 3. 5. 0. 7.-3. 9. 1. 11. - 4. 13. - |. 15. |. 17.

i^l. 19. ^'^'^^. 21. 1,-3. 23. - V. 25. -6.
log -i' log u-36-

Article 122

26. 1. 27. V600,000. 29. ef in.

Article 148

1. ^ + n:r; 2 /ITT- 5 , (2 n + 1) TT + I ; ± 5 ± 2 utt; 2 nx. 3. 2 titt - 41° 48',
4 D 5 3

(2 n + 1) TT + 41° 48'; (2 71 + 1) TT ± 70° 32'; 63° 26' + mr; 2 nir + 11° 32';

(2 n + 1) TT - 11° 32'. 5. 68° 12' + mr; 2mr - 16° 35'; (2 n + 1) tt + 16°

35';2n7r ± 5° 44'.
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Article 150
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Article 189

1. 3f. 3. \\ 6. f. 7. 8 sec.

Article 191

1. o = 115 or 1; d = -10 or +2. 3. c = -11 or ^P; d = 4 or - ^''

.

5. First number V; com. diff. ^\ V2989 or r\ V - 1779. 7. Middle num-

y H5 62)±y/9 64ber = 6; com. diff. = ±y H5 62)±i/9 64 + -^. 9.55°, 60°, 65°. 11. a,

ar^, ar, ar^, .... 13. i i, ± 10, ± 40, ± 160. 15. 10.11 inches. 17.

$1845X1010. 19. 2 a; 4 a Vs.

Article 194
A

1. $2975+ . 3. $1489+ . 5. 20. 7. $497.8C
r (1 +r)'"-i

Article 203

1. Convergent. 3. Conv. if
|
x

i
< 1. Div. if

1
.x

| ^ 1. 5. Conv. if
|

x |< ^
•

7. Conv. if 1 < X < 10. 9. Convergent. 11. Convergent for all values of x.

13. Conv. for all values of x. 15. Conv. when — 1 < x S 1.

Article 205

1. .41. 3. 1.261. 5. .0589+ . 7. .0053+ .

1. tx2. 3.3x2-1. 5. ± ^=r- 7. ±—^^=- 9. ± j-J^ -

" 2V^^ Vx2-1 s/x^-l

Article
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Article 222

a +^-^+ ''- l+^-|-|+ ''' 1 + ^-^^^ +

J^ x3 + • • • . 15. 1 - 1 X + f a:2 - ^ + • • • . 17. 1 + 2 X + 2 a;2 +

2x3+.. •. 19. 3^--^_-i^,-l^„+... . 21.2-^4--^,
2-3^ 4.3'^' 8-3'^ 7-2? 49-2^

_^0x^^+....
23. lrV2-7^+6V3^ + -JL--i^_+---1.

343-2''' 6^L V3x V27x3 J

1 4x^ , 14x4 i40a;2
25. 1 f H 5 r% + • • • .

(16a)* (16a)" (16a)« (16 a)'^

Article 229

1. i n3 + ^ n2 + 1 n. 3. ^ n3 + I n2 + i n. 5. nia + ^?-^ d \ •

Article 231

3. .0314; .0204. 5. S'' 16'" OS'-'.oO; 18" 48' 10". 1.

Article 232

1. Sixth entry should be .364. 3. Sixth entry should be 3' 30".

Article 234

1. an = an-2- an-V, n>l. 3. 1 + x2 + x3 + 2 x4 + • • • . 5. i X -

2 X 4 ^ + 2 ^ -t- • '• 3 X 9 ^ 27 81 ^

Article 239

. 3 _ 1 3 2 2_ _1_ g 2 V3+3
^8(3x + l) 8(x + 3)' 'x x+2'^x-2' •6(x-2-V3)

_ 2 V3 - 3 - _JL 1 1__ 9 3 5-3x
6 (X _ 2 + V3) 4 (X - 1) 4 (X + 1) 2 (x2 + 1)

^- X "^
x2 + 4*

n. 1-1 +.,AF^.. 13. -2+2 _ 3,
^g_

^

3 X ^ 3 (x2 + 3) X ' X - 2 (x - 2)2 *"' 3 (x + 1)

2
17... 1 ,.+.^^ + ..^^T^- 19. 4

1

3(x2-x + l) 2(x-l) ' 5(x-2) ' 10(x + 3) x-2 x-1

21 _1 2_ ^_,
X + 1 • X + 2 ^ X - 2
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Article 241

3. X = 11, y = I, 2 = t\. 5. X = H, 2/ = 1. 2 = ft- 7. Not independent.

Article 249

1. 0. 3. 0. 5. 8. 7. 398. 9. 832. 11. aihcsdi. 33. u = j%%, v = - i,

10 = If. 35. Inconsistent.

Article 257

1. V2, - 45°; 5, 36° 52'; ^146, 114° 27'; 2, 90°; 2, 0°; 2, 0°; 6, 30°; 36,

-60°; 4,90°.

Article 259

3. ± 3; ± 3 i. 5. xi = 2; X2 = 2 (cos 72° + i sin 72°)| X3 = 2 (cos 144°

+ isin 144°); etc. 7. xi = V3; X2 = -^^-^=— ; X3 =—^^"2
; etc.

Article 260

1. 3 cos2 dBmO - sin3 0. 3. cos* ^ — 6 cos2 sin2 d + sin* 0. 5. 6 cos^ sin 6

- 20 cos3 sin3 6 + Qcose sin^ 0.

Article 263

1. 24. 3. 240.

Article 264

1. 20. 3. 120. 7. 190.

Article 266

1. 1260. 3. 360. 5. eC* X 14C7 + eCs X nCe + eCs X 14C5 = 71500. 7. 73.

9. 4; there will be three different throws. 11. 36; there will be 21 different

throws.

Article 268

1. j%. . 3. j\. 6. i§. 7. ^h- 9- .'/s- 11. i^lhz-

Article 270

1. A. 3. /j; i 5. 6. 7. x*5. 9- i-

Article 275

1. a;3 - 6 x2 + 11 .T - 6 = 0. 3. x4 - 2 x3 - 4 x2 + 8 X = 0. 6. 6 x* -

5x3-5x2+5x -1=0.

Article 280

1. - 1, 2, 2. 3. 3, 3,-2, - 2. 5. 3, 3, - 1, - 2. 7. 1, 1, 1, - 2.

9. 3, 3, ± i
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Article 286

1. x3 + 2 a;2 - 4 X - 8 = 0. 3. x3 - 12 x - 14 = 0. 5. x2 + 2 x + 1 = 0.

7. j;> _ 2 X - 2 = 0. 9. x3 + x2 - 9 = 0. 11. x3 - 9 x2 + 24 x - 16 = 0.

13. x* + 6 x3 + x2 - 24 X + 16 = 0. 15. /i = 1; x3 - 3 x = 0. 17. /i = 1

;

a;3 _ 9x - 7 = 0. 23. ± V^, 2. 25. 2, ± 2 V2, - 1 ± V^-

Article 291

1.2,2,-1. 3. 1, -§, -|. 5. 3,2 ±2 Vs. 7.-1,-2,3. 9.1,-1,

- 1 ± V^^. llj (- 1 ± VB), H5 ± V37). 13. 2, - 2, - 2, - 2.

15. 4, 2, -1 ± V-3.

Article 305

1. A = 79° aO'.S, B = 46° 15'.3, C = 70° 55'.6. 3. A = 130° 5'.4,

5 = 32° 26'.1, C = 36° 45'.8. 5. o = 96° 24'.5, 6 = 68° 27'.4, c = 87° 31'.6.

7. c = 50° 6', A = 129° 58', B = 34° 30'. 9. a = 43° 18', B = 28° 48',

C = 74° 22'. 11. b = 78° 17', c = 126° 46', A = 96° 46'. 13. a = 76° 25',

6 = 58° 19', C = 116° 31'. 15. a = 124° 12'31", c= 97° 12' 25", B= 51° 18' 11".

17. a = 58° 8' 19", B = 98° 20' 0", C = 63° 40' 0. 19. b = 75° 29', c = 108°

14', C = 46° 52'. 21. No solution. 23. c = 84° 30', B = 56° 20', C = 97° 19'.

25. B = 42° 37' 18", 137° 22' 42", C = 160° 1' 24", 50° 18' 55", c = 153°

38' 42"; 90° 5' 41". 27. a = 64° 23' 20", b = 99° 48' 50", A = 65° 33' 10".

Article 306

1. N.Y. - S.F. 2568 mi. N.Y. - M.C. 2090 mi. S.F.-M.C. 1889 mi.

Angles: N.Y. 48° 58', S.F. 55° 48', M.C. 82° 40'. Area: 2025300 sq. mi.

3. X = g'' 34'« 15«, ^= 22° 6' N; course, S 44° 28' VV.

Article 307

1. A = ± 92° 50'; < = ± 5^ 4^^ 12«. 3. /i = 43° 27'; A = 70° 3'. 5. N 1°

33'.6 E or W; < = ± S'' 55'" 54*. 7. 9° 46'.4.
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Area of plane A 148

of spherical A 277

Arithmetic progression 161

mean 162

Azimuth 281

Base of logarithms 189

Binomial series 196

convergence 196-7

Binomial theorem 33, 195

Celestial poles 280

sphere 280
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Chance 244

Circle 67

Circular measure 113

Circular parts, Napier's rules of 270

Co-factor 223

Combinations 242

Complex numbers 21, 233

Comparison test 174

Complementary function. . . 97, 100

Computation 199

of logarithms 201-2

Conic sections 72

Conjugate complex numbers. . . 21

Consequent 88

Convergence of series 171

of binomial series 196-7
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Coordinates 42
polar 231

Cosecant 95, 100
Cosine 95, 100

Cotangent 95, 100
Coversed sine Ill

Cubic equation 264

Declination 281

Degree of a term 64
of a polynomial 64

De Moivrc's theorem 235
Derivatives 184

higher 192

formulas 186

Determinants, general definition 220

of second order 217

of third order 218

properties 222

use in sodving equations 226

Differences 203

Difference quotient 180

Discriminant of quadratic oquii-

tion 57
of cubic equation 266

Division 5

synthetic 255

Ellipse 68

Equations, cubic 264

exponential 86

linear 37-53

of nth degree 249-63

quadratic 54-86

quartic 267

trigonometric 137

Equator, celestial 280
Evolution 18
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Exponent, irrational 20

laws 17-21

negative 17

positive integral 7

rational 19

zero 18

Exponential equations 86

values of sin a; and cos x . . .

.

239

Extremes 88

Factor, highest common 11

theorem 10, 249

Factoring 9

Fractions 13

partial 213

Functions 90, 179

continuous 180

hyperbolic 240

trigonometric 103

inverse trigonometric 134

Geometric mean 164

progression 163

infinite progression 165

series 173

Graphic solution of linear equa-

tions 39-50

of quadratic equations. . 65-80

Graph of straight line 41, 43

of trigonometric functions. . . 105

Harmonic progression 167

mean 167

Highest common factor 11

Horizon 281

Hour angle 281

Hyperbola 70

rectangular 71

Hyperbolic functions 240

Imaginary number 21

Infinite series 171

solution of linear equations. 38

Infinity 6

Initial line 99, 231

Integral expression 14

PAGE

Interest 168

Interpolation 206

Inverse ratio 88

trigonometric functions 134

variation 91

Involution 17

Irrational expression 20

exponent 20

number 19

Joint variation 92

Law of sines 144

of cosines 145

of tangents 146

Least common multiple 11

Limit 171

Linear equations 37

graphic solution 39-50

simultaneous 46

Logarithms 28, 30

computation of 201-2

laws of 30

modulus of 203

natural or Naperian . . . 189

Maclaurin's series 193

Mean arithmetic 162

geometric 164

harmonic 167

proportional 89

Means, in a proportion 88

Meridian 281

Modulus of common logarithms 203

Multiplication 4

Naperian logarithms 189

Napier's rules of circular parts 270

analogies 275

Natural logarithms 189

Numbers, complex 21

conjugate comple:: 21

imaginary 21

irrational 19

principal root of 22

rational 5



INDEX 299

PAGE

Numbers, real 20

surd 20

Ordinate 42

Parabola 59,69

Partial fractions 213

Permutations 242

Polar coordinates 231

triangle 269

Pole 231

Power 8

Present worth 169

Principal value of an inverse

trigonometric function . . 135

of a root 22

Progressions, arithmetic 161

geometric 163

infinite geometric 165

harmonic 167

Proportion 88

Quadratic equations 54-86

formula 56

simultaneous 64

Quartic equation 267

Radian 143

measure 143

Radius vector 231

Ratio 88

inverse 88

Rational expression 5

exponent 19

number 5

Real number 20

Root of an equation 56

principal 22

RooLs of unity 237

Secant 95, 100

Series, alternating 173

binomial 196

geometric 173

infinite 171

PAGE

Series, Maclaurin's 193

power 173

ratio test 176

Sine 95, 100

Slope 181

Sphere, celestial 280

terrestrial 279

Spherical excess 269

triangles 269-79

Straight line
,.

41, 43

Subtraction 4

Surd expression 20

number 20

Sjmthetic division 255

Tangent, trigonometric . . . 95, 100

to a curve 181

Terminal line 99

Terrestrial sphere 279

Triangles, plane right 98

plane obUquc 144-155

spherical right 270-1

spherical oblique 272-8

Trigonometric equations 197

Trigonometric functions . . . 94-140

defined 95, 100

discontinuities 104

graphs 105

inverse 134

line values 101

periodicity 106

signs 101

variation 103

Undetermined coefficients 211

Variable 90

Variation 90

direct 91

joint 92

inverse 91

Versed sine Ill

Zero 5

exponent IS
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Exponents. (20) to (25).

1 i xn

(a-)y = a'y. {ahY = a'h\ if) =f,'

Imaginary or Complex Numbers. (26.)

t^V^; i2=-l; 1-3 =-i; 2;4=+l, etc.

V^ = i yfa. a^ + h^ ={a + ib) (a - ib).

X + iy = r (cos d -\- i sin 6) = re^^.

Surds. — If a -\- ^ = c-{- Vd, where V6 and V5 are surds,

then a = c and b = d. (29.)

Logarithms. (37), (39), (226).

If a^ = m, then x = loga rn.

171

loga mn = logo m + loga n. loga ^ = loga w - logo n.

loga mP = p loga m. logaVW = - loga W,

loga a = 1. loga 1=0. k)ga = - », if a > 1.

Change of Base, loga w = logb m X loga &•

If a = 10 and b = e, then loga b = login e = M. (Table V.)

Hence logio m = M loge m.

Binomial Theorem. (42), (220-1).

/ , 7x„ „ , « 11. ,
w(w— 1) „_o72

I

n(n— l)(n— 2) „_„ „

(a+6)" = a"+na"-i6H— ,^
' a'^' -b^ -{- -^ r~ -'a" ^b^+-

n(n-l)(n-2) . . (n-r+D ^,,_,^,
j

\r
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Quadratic Equation, a.c- -\-bx-\-c = 0. (74), (76), (78).

Roots real and unequal if 6^ — 4 ac > 0.

Ellipse: 5; + ^ = 1. Hyperbola: ^ - ^ = ± 1.

:= -h±^b^-4ac^
Roots real and equal if b^ - 4 ac = 0.

^
Roots imaginary if 6^ — 4 ac < 0.

b c
Sum of roots = . Product of roots = - •

a a

Graph of ?/ = ax^ + 6a: + c is a parabola.

Standard Equations of Conic Sections.

Circle: x'^ i- y^ = r^- Parabola: y^ = 4ax; rc^ = 4 ay.

^-r^ = L Hyperbola: ^;
-

|.

Rectangular Hyperbola: xy=±k^.

Ratio, Proportion, Variation.

If, a:b = c:d,

then,

(1) a + b:b = c + d:d;

(2) a-b:b = c-d:d;

(3) a-{-b: a — b = c -]- d: c — d;

(4) a" :
6" = c'^ : d\

If ai : bi = a2 : bo = as : bs = • •
,

,, . ^, ,

.

pai + ga2 + ras +
then anv of these ratios = -r—;—r—,—r—,

—

pbi + 962 + ?-63 +
where p, q, r are any multipliers;

1 r iu ^- ,7^1" + ap" + «3" + • •

also any of these ratios = V/ , „ ,
, „ , , ^ 1

T Oi -f- 02 -r 03 -+-•••

If y <x X then y = kx;

If ?/ « - then y = -, or xy = k.

Arithmetic Progression. (180.)

a = first term; d = common diff.; n = number of terms;

I = last or nth term; S = sum of ?i terms,

nth term = Z = a + (n — 1) c?.

S = ^(a-^l)=n(a + ''~-dy

Arithmetic mean of a and b = —?i

—
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Geometric Progression. (184.)

r = the ratio; a, n, I, S, as above.

nth term = I = ar'^'''-.

„ 1 — r" a — rl
o = a- =

1 — r 1 — r

Geometric mean of a and 6 = Va6.

Sum of infinite geom. progr. = _ ,
if \r\< 1.

Infinite Series. — Tests for convergence or divergence.

, Series, mi + W2 + ws + • • • +Un-i + Un+ • • • .

Converges when the terms are alternately + and — , and

steadily decrease toward zero (199).

u
Converges when the ratio —— becomes and remains numeri-

Un-l

cally less than 1 for all values of n, provided always that

lim Un = 0. (202.)

u
i Diverges when the ratio—^ becomes and remains greater than

Un-l

1, or approaches 1 from the upper side. (202.)

Converges when its terms are numerically less than the corre-

sponding terms of a series known to converge absolutely. (201.)

Diverges when its terms are all of like sign and are numerically

greater than the corresponding terms of a known divergent series.

Test Series.

1 -{- X + X" -\- x^ -\-
\ conv. when

]
x

]
< 1

;

I
div. when

|
x

|
= 1.

1 1 1 ( conv. when p>l;

P + 2P 3^ '
' '

(div. whenp=l.

Derivatives. (210.)

_dij _ y Ay ^
= slope of tangent to curve y =f(x).

^^ ^ dx^ Ax™o A^ ( = rate of change of y relative to x.
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Formulas for Differentiation. (211-2.)

du _ du dy ^_n ^ ^^y^ — ^^
dx dy dx dx ' dx dx

d (u -\- V -\- w -\- • ) _ du dv dw
dx dx dx dx

, /u\ du _ dv^

d (uv) _ dv du \v/ _ dx dx

dx dx dx dx v-

dy _dy du

dx du dx

when y is a function of u, and u a function of x.

dx dx
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loge (l + x) = x-'j-\-j-

Always convergent.

Convergent only if

- l<a;= 1.

Theorem of Undetermined Coefficients. (233-4.)

If, for all values of x from x = Otox = h where h is any number

other than zero, we have

ao + aix + a2X^ + • • • + ^n^" + . • . =0,

then flo = 0, ai = 0, a2 = • • • an = 0, • • • .

If, for values of x as above, we have

ao + dix + a2X^ + • • • =ho + bix + b2X^ + . . . ,

then ao = bo, ai = 6i, a-z = 62, etc.

Partial Fractions. (235-8.) — The partial fractions may be

determined according to the factors of the denominator of the

given fraction. by the following rules:

Corresponding fraction or fractions:

A

Form of factor:

{ax + b),
ax -j- b

{ax + 6)",

{ax^ -\- bx -^c),

Ai ^^ L .

ax + b ' {ax + b)'^^

A. + 5

I

{ax^-{-bx-\-c)
^ Aix + B,

ax^ -\-bx -\- c

A2X + B2
,

'ax^+bx-\-c ' (ax2+6a;+c)2

Determinants. (240-9.)

ai62 ~ a2&i.

{ax + by

ArnX + Brn

{ax^-\-bx-\-c)^
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= ai Ai — biBi + ciCi — diDi,

Here A\, Bi, C\, are the minors of oi, h\, ci, respectively,

ai 61 c\ d\

a2 62 Co do

as &3 C3 ds

04 64 C4 C?4

where ^1, 5i, C\, Di are the minors of ai, 6i, ci, c?i, respectively.

Similarly for a determinant of any order.

Differences and Interpolation. (227-32.)

Let uo, III, U2, he a, given sequence, and let AiWo, A2i^o,

A3U0, • • • be the first terms of the successive difference columns.

Also let „Ci, „C2, Tic's, • • • be the binomial coefficients, i.e.,

,Ci ^C2
n (n — 1)

iCs =
nin-1) (n-2)

etc.
|2

"^"^
|3

Let Un be the nth term of the sequence and s„ the sum of its

first n terms. Then

Un = U0+ nCiAiWo + nC2^2U0 + nC^AsUQ + ' ' ' ',

Sn •= nClUo + nCoAiWo + nC^AoUo + „C4A4Wo + • • • .

If Uo = f (xo), ui = / (xo -{-h),U2=f(xo-\-2h),U3 = f (.To -\-Sh),

. . . , then

f(Xo + nh)=f{Xo)-\-nCiAif(Xo)-\-nC2A2f(Xo)-\-nC3A3f(Xo)+ • ' " •

Here 71 need not be an integer.

Useful Approximations. (224.)

When X, y,u,v, . . . are small (near 0) we have, approximately,

(l+a:)(l+2/) = l-{-x + tj.

(l+x)(l-y) = l+x- y.

{\ - x) {\ - y) = 1 - X - y.

1+ 2/

1

1 +x
1

= \-x.

l+x.

l+x-y.
{l+u){\+v)

(1 + a:)" = 1 + nx.

Vl+x =\ + hx.

' =1 '

Vl+x 2

(l+x)2 = l+2x.

1 -a;

= l+a:+?/+ • • • -u—v-

As special cases of this:

Vl-a; = l-ix.

== = 1 + -a:.

-a: 2

a:)- = 1 -2x.
vr
(1-

e' = l+x. log, (1 + x) = a:, logio (1 + a;) = .43 a;,

sin X = tana; = a; (radians). cosx = 1.
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Plane Trigonometry

Definitions. (124, 132.) — In right triangle ABC, whose sides

are a, h, c [figure of (124)],

• A C- A b
J. A (^

Sin A = - > cos A = -} tan A = r'ceo
A C ^ C

. A ^
esc A = - > sec A = r > cot A = - •aba

vers A. = 1 — cos A. covers A = 1 — sin A.

]\Iore generally, if x be an angle of any magnitude, as XOP in

the figure of (132),

ordinate abscissa ^ ordinate
sm X = -7T-, 1 cos X = -p— > tan x = —,—;—

>

distance distance abscissa

distance distance ^ abscissa
cscx =—p—— ) seca; = -i—;

> cota; = —p—-—

•

ordinate abscissa ordinate

Relations between the Functions of an Angle. Formulas,

Group A. (137.)

1
• 1 o 4-

1 e * COS a:

1. sinx = 3. tanx = —^- 5. cot a: = ^
CSC X cot X Sin X

1 sin.r 6. sin- .r + cos-a; = 1.

2. cosa;=- 4. tana: = '-
« . , ^ o .,

sec X cos X 7.1 + tan- x = sec- x.

8.1+ cot^ X = CSC- X.

Rules for expressing any function of any angle in terms of a

function of an acute angle.. (139.)

Any function of any angle x is numerically equal to the

( same function . .
, ,...,,, (even ,,.

< . ,. of a: increased or diminished by any { , , multi-
( co-function *

( odd

pie of 90°.

The sign of the result must be determined according to the

quadrant of x.
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Functions of + aj and - x. (140.)

/(+ x) =/(— x), when/ = cosine or secant."

/(+x) = — S {— x), when/ = sine, cosecant, tangent, cotangent.

Angles Corresponding to a Given Function. (146.)

Let 6 denote the smallest positive angle having a given func-

tion equal to a given number a. Then all angles such that

^ ( sin x = a , ,

I.
] are X = 2 WTT + ^ and (2 n + 1) tt - ^;

)
esc a: = a

cos x = a

sec X = a
are x = 2mT ± 6]

^_._. tan X = a
111, < are x = nir -{- 6.

(cot X = a

Formulas, Group B. (155.)

9. sin {x -\- y) = sin x cosy + cos x sin y.

10. cos (x + y) = cos X cosy — sin x sin y.

11. sin {x — y) = sin a: cos ?/ — cos a: sin y.

12. cos (x — y) = cos a; cos ?/ + sin a; sin ?/.

, tanx + tany
13. t'"'(^ + !/) = i-tanxtani/

-

14. cot(x + y)^ "°V"°*^7'
-

^ ^ cot a; + cot ?/

tan a; - tan ?/

15. t^^(^-^) = l+tanxtant/-
cot X cot y + 1

16. cot(x-^)= ,3ty-cotx

Formulas, Group C. (157.)

Double Angle. Half-Angle.

14. sin 2 X = 2 sin x cos x. 17. sin .=±v/^-

15. cos 2x = cos^x - sin2 x, 18. cos ^ x = ± v/ ^ +cosx ^

= l-2sin2x,
j9_ tan|x=±v/iZ^,

T 1 + cos X
= 2cos2x-l.

_^
l-cosx

^

sin X

16. tan2x = ^-^*J54_. = ^^" ^
!

1 — tan^ X 1 — cos X
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Fonnulas, Group D. (158.)

20. sin w + sin y = 2 sin—-— cos—^
—

21. smw — sm y = 2cos

—

^— sin —^r

—

22. cos w + cosy = 2 cos—^— cos

—

-—
oo ^ . U-\- V . U — V
23. cosw — cosy = — 2 sin

—

-— sin —^

—

Solution of Plane Triangles

Right Triangles. — By means of the definitions of the trigo-

nometric functions write an equation involving the two given

parts and a required part; solve this for the required part.

Oblique Plane Triangles. (169-172.)

Law of Sines: 1. a : 6 : c = sin ^ : sin B : sin C (169)

Law of Cosines: 2. a^ = 62 .+ c^ -2 be cos A. (170)

Law of Tangents: 3. ^ = ^"f^^Tm - (171)"^

a-\-b tan ^ {A -\- B)

Half-Angles. (172.)

Let s = |(a + 6+c) and , = y/
(^ - «) (^ - ^) (^ " ^)

.

4. sin 5 A
' oc s (s — a)

^^5^. 7. tan*4=-^-
6c

"
s — a

Solution of Oblique Plane Triangles. (173-8.)

Case L Given two angles and a side. (174)

Use law of sines.

Case II. Given two sides and the included angle. (175)

Use law of tangents, then law of sines.
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Case III. Given two sides and an opposite angle. (176)

Use law of sines. Ambiguous case.

Case IV. Given the three sides. (177)

Use one of the formulas (4), (5), (6), or (7) above,

preferably the last one.

Area = | a6 sin C = -^sis-a) (s-h){s-c). (178)

Spherical Trigonometry

Spherical Right Triangle. (313-6.)— Let A, B,C be the angles,

and a, h, c the sides. Arrange the five parts a, b, co-B, co-c, co-A

in circular order. These parts are then connected by Napier's

Rules

:

, .
, ,,

( product of cosines of opposite parts
;

sme of middle part =
j ^^^^^^^ ^^ ^^^^^^^^^ ^^ ^^.^^^^^ p^^^^

To solve a spherical right triangle use Napier's Rules to write

a formula involving the two given parts and a required part.

To solve a quadrantal triangle, solve its polar right triangle.

Spherical Oblique Triangles. (317-22.)

Law of Sines : sin a : sin & : sin c = sin A : sin B : sin C.

Law of Cosines: cos a = cos 6 cos c + sin 6 sin c cos A.

Half-Angles.

-(a + 6 + c); tanr
. /sin (s — a) sin (s — b) sin (s — c)

^

V sin ,s

4.
, 1 . . /sm (s — b) sm (s — c)

2 T sm 6 sm c

1 . . /sm s sm (s — a)
5. cos 7; A. = V -.

—j-\ '

2 V sm b sm c

6. tan p: A
1 /sin (s — b) sin (s — c)

^

2 ~ V sin s sin (s — a)

1 . tan r
tan^A =

2 sin (s — a)
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Half-Sides.

S = l(A+B + C); tan 72= y
^^^ ^

2'
' '

^' V cos (S - A) cos (S-B) cos (S-C)

13.
. 1 J-cosScos(S- A)

sin ;^ a = y -

2 V sin B sin C

14. cos o a = V • D • ^
2 > sin 5 sin C
1 . /cos (.S - B) cos (>S - C)

sin 5 sinC

/— cos S cos (*S — ^

)

cos {S - B) cos {S-C)
, _ ,1 4 / — COS »S COS (*S — ^

)

15. tan^ra = V ~

16. tan -rt = tan R cos {S — A).

Napier's Analogies.

in + 1 ^ j,A
sinH^ - -6) , 1

19 tan - (a - 6) = . {) .
,

'z tan - c.
2 sin I (vl + i?) 2

or> J. 1 / , r\ cos I (^—5), 1
20. ta„2(«+6) =

,„4;^^g;
tan^o.

21. tani(A-B)=$4f^cotic.
2 sin I (a + 6) 2

22. tan -{A + B)= f^.
——~ cot ^ C.

2
'

cos ^ (a + &) 2

Spherical Excess.

E =(A-j-B-^C)- 180°.

1 „ tan I a tan § 6 sin C
23. tan^S =

2 1 + tan I a tan ^ & cos C

24. tan 2 -2^ = Vtan | s tan !(« — «) tan |(s - 6) tan^ (s - c).

Area = ^
^^^Iq^^^'' X 4 7ri?^ = 7^; (radians) X R'.

Solution of Spherical Oblique Triangle. (323.)

I. Given two sides and an opposite angle.

Use law of sines, then Napier's Analogies. Two solu-

tions possible.

II. Given two angles and an opposite side.

As in I.
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III. Given the three sides.

Use formulas for the half-angles.

IV. Given the three angles.

Use formulas for the half-sides.

V. Given two sides and their included angle.

Use Napier's Analogies, then law of sines.

VI. Given two angles and their included side.

As in V.



APPENDIX B

Explanation of the Tables and Their Use

TABLE I

This table gives the decimal part, or mantissa, of the logarithm

of every positive number containing not more than three sig-

nificant figures. The mantissas of the logarithms of numbers
containing more than three significant figures are to be obtained

by interpolation (35). The integral part, or characteristic, of the

logarithm must be supplied by the computer, according to the

position of the decimal point in the number.

Rules for Characteristics.

(a) When the number has n significant figures to the left of

the decimal point, the characteristic of its logarithm is n — 1.

(b) When the number is a decimal with n ciphers between the

decimal point and the first digit which is not zero, the characteris-

tic of its logarithm is 9 — 7i, and — 10 must be supplied to com-

plete the logarithm.

The reason for these rules will become evident when we consider

an example.

Example. Let us find log 302. In the table find 30 in the

left-hand column and run across the page horizontally to the

column headed 2. There we find that

mantissa of log 302 = .4800.

Now 302 lies between 100 and 1000, i.e. between 10^ and 10^.

Hence, by the definition of a logarithm, log 302 must lie between

2 and 3. Therefore the characteristic is 2, and

log 302 = 2.4800.

This is of course not the exact logarithm of 302, but only its value

to four decimal places.

Writing the kst equation in exponential form, we have

302 = los-isoo^

315
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Multiplying both sides by 10,

3020 = 10 X 102-4800 = 103.4800, Hence, log 3020= 3.4800.

Multiplying again by 10,

30200 = 10 X 103-4800 = i04-48oo_ Hence, log 30200 = 4.4800.

Therefore, -where a number is multiplied by 10, the character-

istic of its logarithm is increased by 1; the mantissa remains

unchanged.

Dividing the above equation successively by 10, we obtain

30.2 = 102-4800 ^ 10 = 101-4800^

3.02 = 10^-4800 4- 10 = 100-4800,

.302 = 100-4800 ^ 10 = 100-4800-1^

.0302 = 100-1800-1 -^ 10 = 100-4800-2^

.00302 = 100-4800-2 ^ 10 = 100-4800-3^

and so on. As logarithmic equations these are:

log 30.2 = 1.4800,

log 3.02 = 0.4800,

log .302 = 0.4800 - 1 = 9.4800 - 10,

log .0302 = 0.4800 - 2 = 8.4800 - 10,

log .00302 = 0.4800 - 3 = 7.4800 - 10,

and so on. The second form in the last three equations is used

for convenience in computations; it is in accordance with rule (b).

To discuss rules (a) and (b) more generally, let m be any number.

Then by the definition of a logarithm, when

m lies between log m lies between

(1) 1 and 10, and 1,

(2) 10 and 100, 1 and 2,

(3) 100 and 1000, 2 and 3,

(4) 1000 and 10000, 3 and 4,

and so on. Therefore, when m has

(1) 1 digit to the left of the point, log m = 0.+ • •

(2) 2 digits to the left of the point, log m = l.-\- • •

(3) 3 digits to the left of the point, log w = 2.+ • •

(4) 4 digits to the left of the point, log m = 3.+ • •

and so on.. Hence rule (a).
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In the case of decimal numbers,

when m Hos between log m lies between

(1) 1 and 0.1, and - 1,

(2) O.I and 0.01, - I and - 2,

. (3) 0.01 and 0.001, - 2 and - 3,

(4) 0.001 and 0.0001, - 3 and - 4,

and so on. That is, when m is a decimal number in which

(1) no cipher follows the point, log m = 9.+ • •
• — 10

(2) 1 cipher follows the point, log ?/i = 8.+ • • — 10

(3) 2 ciphers follow the point, log /« = ?.+ • •
• — 10

(4) 3 ciphers follow the point, log //i = 6.+ • • • — 10

and so on. Hence rule (b).

Interpolation. — Exam-pie. Find log 3024.

From the table,

mantissa of log 302 =.4800;
^^^^^^^^^ ^ 0014

mantissa of log 303 = .4814;

Assuming that the increase in the logarithm is proportional

to the increase in the number, we have

mantissa of log 3024 =.4800 +.4 X.0014 =.4806.

The result is here given to the nearest unit in the fourth decimal

place, .4 X.0014 being taken equal to .0006 in place of .00056.

Proportional Parts. — For convenience in interpolation, the

tabular differences greater than 20 are subdivided into tenths and
tabulated under the heading " Prop. Parts." When the difference

is less than 20, the interpolation is best made mentally. If it is

desired, the table of proportional parts may be used when d < 20

by taking half the proportional part corresponding to double the

difference.

Examples.

1. log 164.3 = ?

Mantissa oflog 164 = .2148; d = 27,

Correction for .3 = S

log 164.3 = 2.2156

2. log (164.3) ' = ?

log (164.3)^ = I log 164.3.

= I (2.2156) = 1.4771.
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3. log .01047 = ?

Mantissa of log 104 = .0170; d = i2,

Correction for .7 = 29

log .01047 = 8.0199 - 10

log V(.01047)4 = ?_

-V^.01Q47^ = (.01047)^

log \/(.01047)^ = I log (.01047)^

= I (8.0199-10).

4 (8.0199 - 10) = 32.0796 - 40 =* 22.0796 - 30.

^ (22.0796 - 30) = 7.3599 - 10.

Note. When a logarithm which is followed by —10 is to be divided by a

number, add and subtract a multiple of ten so that the quotient will come
out in a form followed by —10. Thus:

i (8.2448 - 10) = 1 (38.2448 - 40) = 9.5612- 10.

Anti-logarithm.— The number whose logarithm is x is called

the anti-logaritlnn of x.

Thus, a X = log 7n, then m = anti-log x.

Given a logarithm, to obtain the corresponding number {anti-loga-

rithm) .

Examples.

1. log m = 0.4806. m = ?

The given logarithm lies between the tabular logarithms .4800 and .4814,

to which correspond the numbers 302 and 303 respectively. Thus we have

Number. Mantissa of log.

302 .4800
I ^

m .4806 i [ 14 '

303 .4814 )

Hence, without regard to the decimal point, m = 302 + fj = 3024+ .

Pointing o£f properly,

TO = anti-log 0.4806 = 3.024+.

2. log TO = 7.0959 - 10. TO = ?

mantissa of log 124 = .0934 j ^

mantissa of log to = .0959 \ [35
mantissa of log 125 = .0969 >

Hence m has the sequence of figures

124 + U = 1247 +.
Pointing off properly,

TO = anti-log (7.0959 - 10) =.0012474-.

Note. The value of the quotient 1 1 may be obtained from the column of

Prop. Parts by finding the number of tenths of 35 required to equal 25. We
have from this column,

.7 X 35 = 24.5 and .8 X 35 = 28.0.
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Hence we see that to make 25 we need a little more than . 7 X 35. A close

approximation would be .71+, making m =.0012471+.
When the tabular (lifference is largo, it is possible to obtain correctly more

than four significant figures of a number when its four-place logarithm is given.

Cologarithm.— The cologaritkm of a number is the logarithm

of the reciprocal of the number.

Thus: colog m = log— = log 1 — log wi = — log m.

In practice we usually write it in the form

colog 771 = — log m = (10 — log 7n) — 10.

Rule. To form the cologarithm of a number, kubtract its

logarithm from 10 and write — 10 after the result.

Exmnples.

1. colog 302 = (10 - log 302) - 10

= (10 - 2.4S00) - 10 = 7..5200 - 10.

2. colog .003024 = (10 - log .003024) - 10

= (10 - [7.4806 - 10]) - 10 = 2. 5194.

Use of the Cologarithm.

Exa7nple. Calculate the value of •

541 X • 0o2o

Let m be the value of the given fraction. Then without the use

of cologarithms the calculation is as follows.

log m = log 302 + log .415 - log 541 - log .0828.

log 302 = 2.4800 log 541 = 2.7332

log .415 = 9.6180 - 10 log .0828 = 8.9180 - 10

12.0980 - 10 11.6512 - 10

11.6512- 10

log m = 0.4468, m = 2.7975.

To use cologarithms, we write

m = 302x.415X5|jX^3-

log m = log 302 + log. 415 +- colog 541 + colog .0828

log 302= 2.4800

log .415= 9.6180-10
colog 541 = 7.2668 - 10

colog .0828 = 1.082

log 771 = 20.4468 - 20

m = 2.7975.
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As a last example, we calculate the value of the quantity,

=n/:

(00812)i X (-47L2)3

(-522.3)3 X (.01242)?

[
To take account of the signs,' which must be done independ-

ently of the logarithmic calculation, we note that the cube of a

negative quantity occurs on both sides of the fraction; hence the

sign of the fraction is plus.

We now write

logm = I [log (.00812)3 -|_ log (471.2)3 + colog (522.3)3

+ colog(.01242)U

log .00812 = 7.9096 - 10 log (.00812)^ = 8.6064 - 10

log 471.2 = 2.6732 log (471.2)3 =8.0196

log 522.3 = 2.7179 log (522.3)3 = 8.1537

log .01242 = 8.0941 - 10 log (.01242)* = 8.5706 - 10

Hence log (.00812)5 =



26.



322 EXPLANATION OF TABLES

2. log cos 20° 13' = ?

log cos 20° 10' = 9. 0725; d = 4.

d for 3' = 4 X .3 = 1.2

log cos 20° 13' = 9.9724 - 10.

3. log tan 29° 47' = ?

log tan 29° 40' =9. 7556; d = 29.

d for 7' (Prop. Parts) = 20.3

log tan 29° 47' = 9.7576 - 10

The same result may also be obtained by starting with log tan 29° 50', thus:

log tan 29° 50' =9. 7585; d = 29.

d for 3' = 8.7

log tan 29° 47' = 9. 7576 - 10.

As a rule, in interpolating start from the nearest tabular number.

4. log cot 29° 47' = ?

29.log cot 29° 50'
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Angles near 0^ or near 90°.

When an angle, x, lies near 0°, sin x, tan x, and cot x vary too

rapidly with x to permit of accurate interpolation of their loga-

rithms from the table. The same is true of cos x, tan x, and cot z,

when x lies near 90°. We will show how accurate values of these

logarithms may be obtained.

T X „ ,
sin a; 1 rp 1

tan x
Let & = log and T = log »

X being expressed in minutes of arc.

Then log sin x = log x' + S,

and log tan x = log x' -{- T.

When X is small the quantities S and T vary quite slowly with x.

The values of S and T are given in the last column of the first

page of Table II, x ranging from 0° to 5°; —10 is to be added to

the tabular numbers there given.

To get log sin x, reduce x to minutes of arc and take log x' from

Table I; to this logarithm add S.

To get log tan x, add T to log x'.

To get log cot X, first get log tan x and form the cologarithm of

the result.

For, log cot X = colog tan x.

To obtain log cos x, log tan x or log cot x, when x lies between

85° and 90°, calculate the co-function of the complementary angle

by the method given above.

To find the angle from log sin x, log tan x or log cot x, when x

lies near 0°, we use the relations

log x' = log sin X — S;

log x' = log tan X — T;

log x' = — log cot X — T.

The necessary values of .S and T can be obtained after finding

an approximate value of .r from Table II.

To find X from log cos x, log tan x, or log cot x, when x lies near

90°, replace

log cos x by log sin (90° — x)
;

log tan X by log cot (90° — x)
;

log cot X by log tan (90° — x).



324 EXPLANATION OF TABLES

Then 90° — x can be obtained by the method given above for

angles near 0°. Hence x is determined.

Examples.

1. Find log sin x, log tan x and log cot x when re = 1° 22' 12".

X = 1°22' 12" = 82'.2. \ogx' = log 82.2 = 1.9149.

logx = 1.9149 log a; = 1.9149

S = 6. 4637 - 10 T = 6. 4638 - 10

log sin X = 8. 3786 - 10 ( log tan x = 8. 3787 - 10 ^

log cot X = colog tan x = 1.6213.

2. Find log cos x, log tan x and log cot x when x = 89° 5' 50".

Let ?/ = 90° - X = 54' 10" = 54'.17.

Then log cos x, log tan x, log cot x are equal respectively to log sin y, log cot y,

log tan y, which may be found as in example 1.

3. log sin X = 8.2142; x = ?

From Table II, x = 50' + ; hence S = 6.4637 - 10.

log sin X = 8.2142 - 10

S = 6.4637 - 10
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19. log sin X = 9.7926; x = 38° 20'.

20. log sin X = 9.3548; x = 13° 5'.

21. log sin X = 9.88G7; x = 50° 23'.

22. log cos X = 9.G030; x = 66° 22'.

23. log tanx = 0.6278; x = 77° 44'.5.

24. log cot X = 0.0906; x = 39° 4'.

25. log cot X = 0.6648; x = 12° 12'. 5.

26. log sec X = 0.1374; x = 43° 13'.

27. log CSC X = 0.2890; x = 30° 56'.

28. log sec X = 0.6680; x = 77° 35'. 8.

29. log sin X = 8.3698; x = 1° 20' 34".

30. log tan x = 8.7659; x = 3° 20' 18".

31. log cot X = 1.2952; x = 2° 54' 3".

32. log cos X = 8.5387; x = 88° 1' 8".

33. log cot X = 7.9485; x = 89° 29' 28".

34. log cscx = 2.3549; x = 0° 15' 11".

35. log sec X = 1.5102; x = 88° 13' 48".

TABLE III

This table gives the numerical values of the six trigonometric

functions of angles from 0° to 90° at intervals of 10'. The func-

tions of intermediate angles are to be obtained by interpolation.

By using the tables inversely, an angle may be four-^^ u.aally

to the nearest minute, when a function of the angle is known to

four decimal places.

TABLE IV

This is a conversion table for changing from sexagesimal to

radian measure, and conversely. The entries are given to five

decimal places in radians, corresponding nearly to 2" in sexagesi-

mal measure.

Examples.

1. Express 200° 44' 36" in radian measure.

200° = 3 X 60° + 20°

3 X 60° = 3 X 1.04720 = 3.14160 radians.

20° = 0.34907
44' = 0.01280
36" = PX)0017_

200° 44' 36" = 3.50364 radians.

2. Express 3.50364 radians in sexagesimal measure.

3.0
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TABLE V

This table contains the values of a number of mathematical

constants, generally to fifteen places of decimals.

TABLE VI

This table gives the values of the natural or Naperian loga-

rithm of X, and of the ascending and descending exponential

functions e^ and e""", from a; = to a; = 5 at intervals of 0.05.

As a rule the tabular entries are given to three decimal places.

TABLE Vn

This table gives the values of n-, n^, Vn, and Vn, for values of

n from 1 to 100.

The direct use of the table requires no explanation. As an

example of its inverse use we find the approximate value of V320.

We have
(6.8)3 = 314.432 (n = 68),

(6.9)3 == 328.509 (n = 69).

Hence, interpolating linearly,

(6.840)3 = 320 approx., or V320 = 6.840+.
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